A tight lower bound for the hardness of clutters

被引:0
|
作者
Vahan Mkrtchyan
Hovhannes Sargsyan
机构
[1] Yerevan State University,Department of Informatics and Applied Mathematics
来源
关键词
Clutter; Hardness; Independent set; Maximal independent set; Primary 05C69; Secondary 05C70; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A clutter (or antichain or Sperner family) L is a pair (V, E), where V is a finite set and E is a family of subsets of V none of which is a subset of another. Normally, the elements of V are called vertices of L, and the elements of E are called edges of L. A subset se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} of an edge e of a clutter is recognizing for e, if se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} is not a subset of another edge. The hardness of an edge e of a clutter is the ratio of the size of e's\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\text {'s}$$\end{document} smallest recognizing subset to the size of e. The hardness of a clutter is the maximum hardness of its edges. In this short note we prove a lower bound for the hardness of an arbitrary clutter. Our bound is asymptotically best-possible in a sense that there is an infinite sequence of clutters attaining our bound.
引用
收藏
页码:21 / 25
页数:4
相关论文
共 50 条
  • [21] Tight Lower Bound of Generalization Error in Ensemble Learning
    Uchida, Masato
    2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 1130 - 1133
  • [22] Note on maximal bisection above tight lower bound
    Gutin, Gregory
    Yeo, Anders
    INFORMATION PROCESSING LETTERS, 2010, 110 (21) : 966 - 969
  • [23] A tight lower bound for online monotonic list labeling
    Dietz, PF
    Seiferas, JI
    Zhang, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (03) : 626 - 637
  • [24] Tight Lower Bound for Percolation Threshold on an Infinite Graph
    Hamilton, Kathleen E.
    Pryadko, Leonid P.
    PHYSICAL REVIEW LETTERS, 2014, 113 (20)
  • [25] A TIGHT LOWER BOUND ON THE SIZE OF PLANAR PERMUTATION NETWORKS
    KLAWE, M
    LEIGHTON, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 450 : 281 - 287
  • [26] Tight lower bound on geometric discord of bipartite states
    Rana, Swapan
    Parashar, Preeti
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [28] A TIGHT LOWER BOUND ON THE SIZE OF PLANAR PERMUTATION NETWORKS
    KLAWE, M
    LEIGHTON, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 558 - 563
  • [29] Tight lower bound to the geometric measure of quantum discord
    Hassan, Ali Saif M.
    Lari, Behzad
    Joag, Pramod S.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [30] A Tight Lower Bound for Parity in Noisy Communication Networks
    Dutta, Chinmoy
    Kanoria, Yashodhan
    Manjunath, D.
    Radhakrishnan, Jaikumar
    PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 1056 - +