A tight lower bound for the hardness of clutters

被引:0
|
作者
Vahan Mkrtchyan
Hovhannes Sargsyan
机构
[1] Yerevan State University,Department of Informatics and Applied Mathematics
来源
关键词
Clutter; Hardness; Independent set; Maximal independent set; Primary 05C69; Secondary 05C70; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A clutter (or antichain or Sperner family) L is a pair (V, E), where V is a finite set and E is a family of subsets of V none of which is a subset of another. Normally, the elements of V are called vertices of L, and the elements of E are called edges of L. A subset se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} of an edge e of a clutter is recognizing for e, if se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} is not a subset of another edge. The hardness of an edge e of a clutter is the ratio of the size of e's\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\text {'s}$$\end{document} smallest recognizing subset to the size of e. The hardness of a clutter is the maximum hardness of its edges. In this short note we prove a lower bound for the hardness of an arbitrary clutter. Our bound is asymptotically best-possible in a sense that there is an infinite sequence of clutters attaining our bound.
引用
收藏
页码:21 / 25
页数:4
相关论文
共 50 条
  • [1] A tight lower bound for the hardness of clutters
    Mkrtchyan, Vahan
    Sargsyan, Hovhannes
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 21 - 25
  • [2] The Shannon Lower Bound Is Asymptotically Tight
    Koch, Tobias
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6155 - 6161
  • [3] A Tight Lower Bound for Streett Complementation
    Cai, Yang
    Zhang, Ting
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2011), 2011, 13 : 339 - 350
  • [4] A Tight Lower Bound for Entropy Flattening
    Chen, Yi-Hsiu
    Goos, Mika
    Vadhan, Salil P.
    Zhang, Jiapeng
    33RD COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2018), 2018, 102
  • [5] A Tight Lower Bound for Steiner Orientation
    Chitnis, Rajesh
    Feldmann, Andreas Emil
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, CSR 2018, 2018, 10846 : 65 - 77
  • [6] A tight lower bound on the minimal dispersion
    Trodler, M.
    Volec, J.
    Vybiral, J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [7] Tight Lower Bound for the Channel Assignment Problem
    Socala, Arkadiusz
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (04)
  • [8] A tight lower bound for restricted pir protocols
    Beigel, R
    Fortnow, L
    Gasarch, W
    COMPUTATIONAL COMPLEXITY, 2006, 15 (01) : 82 - 91
  • [9] Tight Lower Bound for Linear Sketches of Moments
    Andoni, Alexandr
    Nguyen, Huy L.
    Polyanskiy, Yury
    Wu, Yihong
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 25 - 32
  • [10] A tight lower bound for optimal bin packing
    Chao, HY
    Harper, MP
    Quong, RW
    OPERATIONS RESEARCH LETTERS, 1995, 18 (03) : 133 - 138