Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
XingYa Fan
JianXun He
BaoDe Li
DaChun Yang
机构
[1] Guangzhou University,School of Mathematics and Information Sciences
[2] Xinjiang University,College of Mathematics and System Science
[3] Beijing Normal University,School of Mathematical Sciences
[4] Laboratory of Mathematics and Complex Systems,undefined
[5] Ministry of Education,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator; 42B35; 46E30; 42B30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A→:=(A1,A2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A: = \left( {{A_1},{A_2}} \right)$$\end{document} be a pair of expansive dilations and φ: ℝn×ℝm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} via the anisotropic Lusin-area function and establish its atomic characterization, the g→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g$$\end{document} -function characterization, the g→λ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g_\lambda ^*$$\end{document}-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document}), if T is a sublinear operator and maps all ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document})-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to Lφ(Rn × Rm) and from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to itself, whose kernels are adapted to the action of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A$$\end{document}. The results of this article essentially extend the existing results for weighted product Hardy spaces on ℝn × ℝm and are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:61
相关论文
共 50 条
  • [31] INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF WEAK MUSIELAK-ORLICZ HARDY SPACES
    Yan, Xianjie
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04) : 969 - 988
  • [32] Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 237 - 292
  • [33] MOLECULAR CHARACTERIZATION OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Sun, Ruirui
    Li, Jinxia
    Li, Baode
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2377 - 2395
  • [34] Weak Musielak-Orlicz Hardy spaces and applications
    Liang, Yiyu
    Yang, Dachun
    Jiang, Renjin
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (5-6) : 634 - 677
  • [35] A new molecular characterization of diagonal anisotropic Musielak-Orlicz Hardy spaces
    Liao, Minfeng
    Li, Jinxia
    Li, Bo
    Li, Baode
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [36] Several remarks on Musielak-Orlicz Hardy spaces
    Bonami, Aline
    Ky, Luong Dang
    Liang, Yiyu
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 181
  • [37] LUSIN AREA FUNCTION AND MOLECULAR CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Hou, Shaoxiong
    Yang, Dachun
    Yang, Sibei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [38] Littlewood-Paley Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 71 - 107
  • [39] Martingale inequalities on Musielak-Orlicz Hardy spaces
    He, Lechen
    Peng, Lihua
    Xie, Guangheng
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5171 - 5189
  • [40] REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) : 3033 - 3082