Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
XingYa Fan
JianXun He
BaoDe Li
DaChun Yang
机构
[1] Guangzhou University,School of Mathematics and Information Sciences
[2] Xinjiang University,College of Mathematics and System Science
[3] Beijing Normal University,School of Mathematical Sciences
[4] Laboratory of Mathematics and Complex Systems,undefined
[5] Ministry of Education,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator; 42B35; 46E30; 42B30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A→:=(A1,A2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A: = \left( {{A_1},{A_2}} \right)$$\end{document} be a pair of expansive dilations and φ: ℝn×ℝm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} via the anisotropic Lusin-area function and establish its atomic characterization, the g→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g$$\end{document} -function characterization, the g→λ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g_\lambda ^*$$\end{document}-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document}), if T is a sublinear operator and maps all ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document})-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to Lφ(Rn × Rm) and from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to itself, whose kernels are adapted to the action of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A$$\end{document}. The results of this article essentially extend the existing results for weighted product Hardy spaces on ℝn × ℝm and are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:61
相关论文
共 50 条
  • [21] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Zhang, Hui
    Qi, Chunyan
    Li, Baode
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 993 - 1022
  • [22] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [23] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [24] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [25] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [26] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Hui Zhang
    Chunyan Qi
    Baode Li
    Frontiers of Mathematics in China, 2017, 12 : 993 - 1022
  • [27] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [28] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [29] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 (08) : 1567 - 1584
  • [30] ATOMIC CHARACTERIZATIONS OF WEAK MARTINGALE MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Xie, Guangheng
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 884 - 917