Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
XingYa Fan
JianXun He
BaoDe Li
DaChun Yang
机构
[1] Guangzhou University,School of Mathematics and Information Sciences
[2] Xinjiang University,College of Mathematics and System Science
[3] Beijing Normal University,School of Mathematical Sciences
[4] Laboratory of Mathematics and Complex Systems,undefined
[5] Ministry of Education,undefined
来源
Science China Mathematics | 2017年 / 60卷
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator; 42B35; 46E30; 42B30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A→:=(A1,A2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A: = \left( {{A_1},{A_2}} \right)$$\end{document} be a pair of expansive dilations and φ: ℝn×ℝm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} via the anisotropic Lusin-area function and establish its atomic characterization, the g→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g$$\end{document} -function characterization, the g→λ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec g_\lambda ^*$$\end{document}-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document}), if T is a sublinear operator and maps all ((φ,q,s→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\varphi ,q,\vec s} \right)$$\end{document})-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to Lφ(Rn × Rm) and from HA→φ(ℝn×ℝm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\vec A}^\varphi \left( {{\mathbb{R}^n} \times {\mathbb{R}^m}} \right)$$\end{document} to itself, whose kernels are adapted to the action of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec A$$\end{document}. The results of this article essentially extend the existing results for weighted product Hardy spaces on ℝn × ℝm and are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:61
相关论文
共 50 条
  • [1] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    FAN XingYa
    HE JianXun
    LI BaoDe
    YANG DaChun
    Science China Mathematics, 2017, 60 (11) : 2093 - 2154
  • [2] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    Fan XingYa
    He JianXun
    Li BaoDe
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2093 - 2154
  • [3] New real-variable characterizations of Musielak-Orlicz Hardy spaces
    Liang, Yiyu
    Huang, Jizheng
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 413 - 428
  • [4] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410
  • [5] NEW REAL-VARIABLE CHARACTERIZATIONS OF ANISOTROPIC WEAK HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Qi, Chunyan
    Zhang, Hui
    Li, Baode
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) : 607 - 637
  • [6] Real-Variable Theory of Musielak-Orlicz Hardy Spaces Preface
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : V - +
  • [7] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [8] WAVELET CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES
    Fu, Xing
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 1017 - 1046
  • [9] New molecular characterizations of anisotropic Musielak-Orlicz Hardy spaces and their applications
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1341 - 1366
  • [10] Summability in Anisotropic Musielak-Orlicz Hardy Spaces
    Ruan, Jiashuai
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 991 - 1006