A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials

被引:0
|
作者
S. R. Swamy
Abbas Kareem Wanas
机构
[1] RV College of Engineering,Department of Computer Science and Engineering
[2] University of Al-Qadisiyah,Department of Mathematics, College of Science
关键词
Fekete–Szegö functional; Regular function; Bi-univalent function; (; , ; )-Lucas polynomial; Primary 30C45; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Making use of (m, n)-Lucas polynomials, we propose a comprehensive family of regular functions of the type g(z)=z+∑j=2∞djzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=z+\sum \nolimits _{j=2}^{\infty }d_jz^j$$\end{document} which are bi-univalent in the disc {z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in {\mathbb {C}}:|z| <1\}$$\end{document}. We find estimates on the coefficients |d2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_2|$$\end{document}, |d3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_3|$$\end{document} and the of Fekete–Szegö functional for members of this subfamily. Relevant connections to existing results and new consequences of the main result are also presented.
引用
收藏
相关论文
共 50 条
  • [41] Bounding coe ffi cients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials
    Hussen, Abdulmtalb
    Madi, Mohammed S. A.
    Abominjil, Abobaker M. M.
    AIMS MATHEMATICS, 2024, 9 (07): : 18034 - 18047
  • [42] Applications of (M,N)-Lucas Polynomials for Holomorphic and Si-Univalent Functions
    Wanas, Abbas Kareem
    FILOMAT, 2020, 34 (10) : 3361 - 3368
  • [43] CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL OPERATOR
    Pathak, A. L.
    Porwal, S.
    Agarwal, R.
    Shukla, Puneet
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2023, 22 (3-4): : 289 - 296
  • [44] On the Coefficients of Several Classes of Bi-univalent Functions Defined by Convolution
    Guo Dong
    Li Zong-tao
    Communications in Mathematical Research, 2018, 34 (01) : 65 - 76
  • [45] New subclasses of bi-univalent functions defined by multiplier transformation
    Porwal, Saurabh
    Kumar, Shivam
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 47 - 55
  • [46] Initial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomials
    Swamy, Sondekola Rudra
    Breaz, Daniel
    Venugopal, Kala
    Kempegowda, Mamatha Paduvalapattana
    Cotirla, Luminita-Ioana
    Rapeanu, Eleonora
    MATHEMATICS, 2024, 12 (09)
  • [47] Faber Polynomial Coefficient Estimates for a Comprehensive Subclass of Analytic Bi-Univalent Functions Defined by Subordination
    Zireh, Ahmad
    Adegani, E. Analouei
    Bulut, Serap
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (04) : 487 - 504
  • [48] RESULTS ON BI-UNIVALENT FUNCTIONS
    STYER, D
    WRIGHT, DJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (02) : 243 - 248
  • [49] Applications of the q-Wanas operator for a certain family of bi-univalent functions defined by subordination
    Wanas, Abbas Kareem
    Mahdi, Ahmed Mohsin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (06)
  • [50] On the class of bi-univalent functions
    Sivasubramanian, Srikandan
    Sivakumar, Radhakrishnan
    Bulboaca, Teodor
    Shanmugam, Tirunelveli Nellaiappar
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (11) : 895 - 900