A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials

被引:0
|
作者
S. R. Swamy
Abbas Kareem Wanas
机构
[1] RV College of Engineering,Department of Computer Science and Engineering
[2] University of Al-Qadisiyah,Department of Mathematics, College of Science
关键词
Fekete–Szegö functional; Regular function; Bi-univalent function; (; , ; )-Lucas polynomial; Primary 30C45; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Making use of (m, n)-Lucas polynomials, we propose a comprehensive family of regular functions of the type g(z)=z+∑j=2∞djzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=z+\sum \nolimits _{j=2}^{\infty }d_jz^j$$\end{document} which are bi-univalent in the disc {z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in {\mathbb {C}}:|z| <1\}$$\end{document}. We find estimates on the coefficients |d2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_2|$$\end{document}, |d3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_3|$$\end{document} and the of Fekete–Szegö functional for members of this subfamily. Relevant connections to existing results and new consequences of the main result are also presented.
引用
收藏
相关论文
共 50 条
  • [31] Bounds on Coefficients for a Subclass of Bi-Univalent Functions with Lucas-Balancing Polynomials and Ruscheweyh Derivative Operator
    Hussen, Abdulmtalb
    Alamari, Moamar M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1237 - 1249
  • [32] Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials
    Amourah, Ala
    Alnajar, Omar
    Darus, Maslina
    Shdouh, Ala
    Ogilat, Osama
    MATHEMATICS, 2023, 11 (08)
  • [33] Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (P, Q)-Lucas Polynomial
    Muthaiyan, Elumalai
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01): : 273 - 289
  • [34] Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with ( p, q)-Wanas Operator
    Wanas, Abbas Kareem
    Sakar, Fethiye Muge
    Alb Lupas, Alina
    AXIOMS, 2023, 12 (05)
  • [35] SOME PROPERTIES FOR COMPREHENSIVE SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Al-Hawary, Tariq
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (5-6): : 1035 - 1041
  • [36] Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials
    Srivastava, H. M.
    Altinkaya, Sahsene
    Yalcin, Sibel
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1873 - 1879
  • [37] Certain classes of bi-univalent functions associated with the Horadam polynomials
    Orhan, Halit
    Mamatha, Paduvalapattana Kempegowda
    Swamy, Sondekola Rudra
    Magesh, Nanjundan
    Yamini, Jagadeesan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (01) : 258 - 272
  • [38] (p, g)-CHEBYSHEV POLYNOMIALS AND THEIR APPLICATIONS TO BI-UNIVALENT FUNCTIONS
    Amourah, A.
    Abdelkarim, H.
    Alelaumi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 481 - 486
  • [39] Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials
    H. M. Srivastava
    Şahsene Altınkaya
    Sibel Yalçın
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1873 - 1879
  • [40] Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator
    Aldawish, Ibtisam
    Al-Hawary, Tariq
    Frasin, B. A.
    MATHEMATICS, 2020, 8 (05)