A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials

被引:0
|
作者
S. R. Swamy
Abbas Kareem Wanas
机构
[1] RV College of Engineering,Department of Computer Science and Engineering
[2] University of Al-Qadisiyah,Department of Mathematics, College of Science
关键词
Fekete–Szegö functional; Regular function; Bi-univalent function; (; , ; )-Lucas polynomial; Primary 30C45; Secondary 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Making use of (m, n)-Lucas polynomials, we propose a comprehensive family of regular functions of the type g(z)=z+∑j=2∞djzj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=z+\sum \nolimits _{j=2}^{\infty }d_jz^j$$\end{document} which are bi-univalent in the disc {z∈C:|z|<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z\in {\mathbb {C}}:|z| <1\}$$\end{document}. We find estimates on the coefficients |d2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_2|$$\end{document}, |d3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|d_3|$$\end{document} and the of Fekete–Szegö functional for members of this subfamily. Relevant connections to existing results and new consequences of the main result are also presented.
引用
收藏
相关论文
共 50 条
  • [1] A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials
    Swamy, S. R.
    Wanas, Abbas Kareem
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [2] Applications of (M, N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions
    Wanas, Abbas Kareem
    Cotirla, Luminita-Ioana
    MATHEMATICS, 2022, 10 (04)
  • [3] Bi-univalent functions of order ζ connected with (m, n)- Lucas polynomials
    Hadi, Sarem H.
    Darus, Maslina
    Bulboaca, Teodor
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 31 (04): : 433 - 447
  • [4] Coefficient bounds and Fekete-Szego inequality for a certain family of holomorphic and bi-univalent functions defined by (M,N)-Lucas polynomials
    Wanas, Abbas Kareem
    Salagean, Grigore Stefan
    Orsolya, Pall-Szabo Agnes
    FILOMAT, 2023, 37 (04) : 1037 - 1044
  • [5] Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials
    Frasin, Basem A.
    Sailaja, Yerragunta
    Swamy, Sondekola R.
    Wanas, Abbas K.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 25 - 32
  • [6] INITIAL BOUNDS FOR CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY THE (p, q)-LUCAS POLYNOMIALS
    Magesh, N.
    Abirami, C.
    Altinkaya, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 282 - 288
  • [7] Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomials
    Shaba, Timilehin Gideon
    Wanas, Abbas Kareem
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 615 - 626
  • [8] Some Special Families of Holomorphic and Salagean Type Bi-univalent Functions Associated with (m,n)-Lucas Polynomials
    Swamy, S. R.
    Wanas, Abbas Kareem
    Sailaja, Y.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (04): : 563 - 574
  • [9] Certain subclasses of bi-univalent functions defined by Chebyshev polynomials
    Sivasankari, V.
    Karthiyayini, O.
    Magesh, N.
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 89 - 103
  • [10] Certain subclasses of bi-univalent functions defined by Chebyshev polynomials
    V. Sivasankari
    O. Karthiyayini
    N. Magesh
    Afrika Matematika, 2021, 32 : 89 - 103