Is the allee effect relevant to stochastic cancer model?

被引:0
|
作者
Mrinmoy Sardar
Subhas Khajanchi
机构
[1] Jadavpur University,Department of Mathematics
[2] Presidency University,Department of Mathematics
关键词
Dynamical bifurcation point; Existence & uniqueness; Parametric perturbation method; Brownian motion; Uniformly continuous; 34L30; 37D10; 60H10; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delineates the evolution of a tumor cell population with Allee effect through a system of stochastic differential equations. A stochastic extension of the deterministic model is examined to encapsulate the uncertainty or variation observed in the tumor evolution using parametric perturbation method. We have discussed the existence, uniqueness, stochastically ultimate bounded, stochastically permanence and asymptotic stability of the solutions to the stochastic tumor cell population with the aid of constructing Lyapunov function. Then we have investigated that the model has a unique dynamical bifurcation point Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta $$\end{document} with the following conditions: if Θ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta < 0$$\end{document}, then the model has a unique invariant measure, the Dirac measure concentrated at zero, and it is stable. If Θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta > 0$$\end{document} then a stable unique invariant measure on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}_{+}$$\end{document} occurs, and the Dirac measure concentrated at zero is unstable. Numerical results are performed using first-order Ito-Wiener stochastic scheme to exhibit the theoretical analysis.
引用
收藏
页码:2293 / 2315
页数:22
相关论文
共 50 条
  • [21] Dynamical Analysis of a Stochastic Predator-Prey Model with an Allee Effect
    Rao, Feng
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Analysis of a stochastic predator–prey population model with Allee effect and jumps
    Rong Liu
    Guirong Liu
    Journal of Inequalities and Applications, 2019
  • [23] Global stability of a stochastic predator-prey model with Allee effect
    Tian, Baodan
    Yang, Liu
    Zhong, Shouming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (04)
  • [24] Persistence Analysis of a Stochastic Single Species Population Model with Allee Effect
    Xu, Chaoqun
    Li, Guohua
    FLUCTUATION AND NOISE LETTERS, 2022, 21 (04):
  • [25] Analysis of a stochastic hybrid population model with impulsive perturbations and Allee effect
    Chen Qianjun
    Liu Zijian
    Tan Yuanshun
    Yang Jin
    Journal of Applied Mathematics and Computing, 2023, 69 : 565 - 587
  • [26] Asymptotic behavior of a stochastic population model with Allee effect by Levy jumps
    Zhang, Qiumei
    Jiang, Daqing
    Zhao, Yanan
    O'Regan, Donal
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 24 : 1 - 12
  • [27] Exponential extinction of a stochastic predator-prey model with Allee effect
    Zhang, Beibei
    Wang, Hangying
    Lv, Guangying
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 507 : 192 - 204
  • [28] STOCHASTIC DIFFERENCE EQUATIONS WITH THE ALLEE EFFECT
    Braverman, Elena
    Rodkina, Alexandra
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 5929 - 5949
  • [29] Analysis of a stochastic predator-prey population model with Allee effect and jumps
    Liu, Rong
    Liu, Guirong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [30] How migration changes dynamic patterns in a stochastic metapopulation model with Allee effect
    Pavletsov, Makar
    Ryashko, Lev
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024, 233 (23-24): : 3349 - 3359