Is the allee effect relevant to stochastic cancer model?

被引:0
|
作者
Mrinmoy Sardar
Subhas Khajanchi
机构
[1] Jadavpur University,Department of Mathematics
[2] Presidency University,Department of Mathematics
关键词
Dynamical bifurcation point; Existence & uniqueness; Parametric perturbation method; Brownian motion; Uniformly continuous; 34L30; 37D10; 60H10; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delineates the evolution of a tumor cell population with Allee effect through a system of stochastic differential equations. A stochastic extension of the deterministic model is examined to encapsulate the uncertainty or variation observed in the tumor evolution using parametric perturbation method. We have discussed the existence, uniqueness, stochastically ultimate bounded, stochastically permanence and asymptotic stability of the solutions to the stochastic tumor cell population with the aid of constructing Lyapunov function. Then we have investigated that the model has a unique dynamical bifurcation point Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta $$\end{document} with the following conditions: if Θ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta < 0$$\end{document}, then the model has a unique invariant measure, the Dirac measure concentrated at zero, and it is stable. If Θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta > 0$$\end{document} then a stable unique invariant measure on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}_{+}$$\end{document} occurs, and the Dirac measure concentrated at zero is unstable. Numerical results are performed using first-order Ito-Wiener stochastic scheme to exhibit the theoretical analysis.
引用
收藏
页码:2293 / 2315
页数:22
相关论文
共 50 条
  • [11] Phenomenological bifurcation in a generally stochastic population model with Allee effect
    Wang, Hongcui
    EUROPEAN PHYSICAL JOURNAL E, 2022, 45 (10):
  • [12] A note on asymptotic behaviors of stochastic population model with Allee effect
    Yang, Qingshan
    Jiang, Daqing
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4611 - 4619
  • [13] Permanence and extinction of a stochastic hybrid population model with Allee effect
    Ji, Weiming
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [14] Phenomenological bifurcation in a generally stochastic population model with Allee effect
    Hongcui Wang
    The European Physical Journal E, 2022, 45
  • [15] Stochastic Sensitivity Analysis and Control for Ecological Model with the Allee Effect
    Ryashko, L.
    Bashkirtseva, I.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2015, 10 (02) : 130 - 141
  • [16] A stochastic modified Beverton-Holt model with the Allee effect
    Assas, Laila
    Dennis, Brian
    Elaydi, Saber
    Kwessi, Eddy
    Livadiotis, George
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (01) : 37 - 54
  • [17] Stochastic plant-herbivore interaction model with Allee effect
    Asfaw, Manalebish Debalike
    Kassa, Semu Mitiku
    Lungu, Edward M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (6-7) : 2183 - 2209
  • [18] Stochastic Analysis of the Ricker Population Model with Immigration and Allee Effect
    Bashkirtseva, Irina A.
    Kuleshova, Irina A.
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [19] Bifurcations in a Cancer and Immune Model with Allee Effect
    Hernandez-Lopez, Eymard
    Nunez-Lopez, Mayra
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13):
  • [20] Analysis of a stochastic hybrid population model with impulsive perturbations and Allee effect
    Chen Qianjun
    Liu Zijian
    Tan Yuanshun
    Yang Jin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 565 - 587