Is the allee effect relevant to stochastic cancer model?

被引:0
|
作者
Mrinmoy Sardar
Subhas Khajanchi
机构
[1] Jadavpur University,Department of Mathematics
[2] Presidency University,Department of Mathematics
关键词
Dynamical bifurcation point; Existence & uniqueness; Parametric perturbation method; Brownian motion; Uniformly continuous; 34L30; 37D10; 60H10; 92B05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper delineates the evolution of a tumor cell population with Allee effect through a system of stochastic differential equations. A stochastic extension of the deterministic model is examined to encapsulate the uncertainty or variation observed in the tumor evolution using parametric perturbation method. We have discussed the existence, uniqueness, stochastically ultimate bounded, stochastically permanence and asymptotic stability of the solutions to the stochastic tumor cell population with the aid of constructing Lyapunov function. Then we have investigated that the model has a unique dynamical bifurcation point Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta $$\end{document} with the following conditions: if Θ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta < 0$$\end{document}, then the model has a unique invariant measure, the Dirac measure concentrated at zero, and it is stable. If Θ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta > 0$$\end{document} then a stable unique invariant measure on R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}_{+}$$\end{document} occurs, and the Dirac measure concentrated at zero is unstable. Numerical results are performed using first-order Ito-Wiener stochastic scheme to exhibit the theoretical analysis.
引用
收藏
页码:2293 / 2315
页数:22
相关论文
共 50 条
  • [1] Is the allee effect relevant to stochastic cancer model?
    Sardar, Mrinmoy
    Khajanchi, Subhas
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) : 2293 - 2315
  • [2] On stochastic population model with the Allee effect
    Krstic, Marija
    Jovanovic, Miljana
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (1-2) : 370 - 379
  • [3] Is the Allee effect relevant in cancer evolution and therapy?
    Delitala, Marcello
    Ferraro, Mario
    AIMS MATHEMATICS, 2020, 5 (06): : 7649 - 7660
  • [4] Dynamics of a stochastic population model with Allee effect and jumps
    Liu, Rong
    Liu, Guirong
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2022, 17
  • [5] Stochastic plant–herbivore interaction model with Allee effect
    Manalebish Debalike Asfaw
    Semu Mitiku Kassa
    Edward M. Lungu
    Journal of Mathematical Biology, 2019, 79 : 2183 - 2209
  • [6] Analysis of a stochastic hybrid population model with Allee effect
    Liu, Meng
    Deng, Meiling
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [7] STRONG ALLEE EFFECT IN A STOCHASTIC LOGISTIC MODEL WITH MATE LIMITATION AND STOCHASTIC IMMIGRATION
    Xu, Chuang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (07): : 2321 - 2336
  • [8] Threshold dynamics of a stochastic single population model with Allee effect
    Zhu, Yu
    Wang, Liang
    Qiu, Zhipeng
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [9] Dynamics of a stochastic population model with Allee effect and Levy jumps
    Deng, Meiling
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531
  • [10] Stochastic predator-prey model with Allee effect on prey
    Aguirre, Pablo
    Gonzalez-Olivares, Eduardo
    Torres, Soledad
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 768 - 779