Filter pruning-based two-step feature map reconstruction

被引:0
|
作者
Yongsheng Liang
Wei Liu
Shuangyan Yi
Huoxiang Yang
Zhenyu He
机构
[1] Harbin Institute of Technology,School of Computer Science and Technology
[2] Peng Cheng Laboratory,Research Center of Networks and Communications
[3] Shenzhen Institute of Information Technology,School of Software Engineering
[4] Shenzhen University,School of Electronics and Information Engineering
来源
关键词
Filter pruning; Channel pruning; Feature map reconstruction; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
In deep neural network compression, channel/filter pruning is widely used for compressing the pre-trained network by judging the redundant channels/filters. In this paper, we propose a two-step filter pruning method to judge the redundant channels/filters layer by layer. The first step is to design a filter selection scheme based on ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm by reconstructing the feature map of current layer. More specifically, the filter selection scheme aims to solve a joint ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm minimization problem, i.e., both the regularization term and feature map reconstruction error term are constrained by ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm. The ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm regularization plays a role in the channel/filter selection, while the ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm feature map reconstruction error term plays a role in the robust reconstruction. In this way, the proposed filter selection scheme can learn a column-sparse coefficient representation matrix that can indicate the redundancy of filters. Since pruning the redundant filters in current layer might dramatically influence the output feature map of the following layer, the second step needs to update the filters of the following layer to assure output of feature map approximates to that of baseline. Experimental results demonstrate the effectiveness of this proposed method. For example, our pruned VGG-16 on ImageNet achieves 4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times $$\end{document} speedup with 0.95% top-5 accuracy drop. Our pruned ResNet-50 on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.56% top-5 accuracy drop. Our pruned MobileNet on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.20% top-5 accuracy drop.
引用
收藏
页码:1555 / 1563
页数:8
相关论文
共 50 条
  • [41] Two-Step TDLAS Tomographic Reconstruction for Temperature Imaging
    Si, Jingjing
    Liu, Xin
    Cheng, Yinbo
    Liu, Chang
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [42] A Two-Step Outlier Removal Procedure for Surface Reconstruction
    杨荣骞
    程胜
    陈亚珠
    JournalofShanghaiJiaotongUniversity(Science), 2009, 14 (03) : 266 - 272
  • [43] Two-step outlier removal procedure for surface reconstruction
    Yang R.-Q.
    Cheng S.
    Chen Y.-Z.
    Journal of Shanghai Jiaotong University (Science), 2009, 14 (3) : 266 - 272
  • [44] Feature selection and ensemble construction: A two-step method for aspect based sentiment analysis
    Akhtar, Md Shad
    Gupta, Deepak
    Ekbal, Asif
    Bhattacharyya, Pushpak
    KNOWLEDGE-BASED SYSTEMS, 2017, 125 : 116 - 135
  • [46] Particle filter based automatic frequency control scheme by combining the two-step structure
    Key Laboratory of Universal Wireless Communications , Beijing University of Posts and Telecommunications, Beijing 100876, China
    J. China Univ. Post Telecom., 2 (9-14):
  • [47] Particle filter based automatic frequency control scheme by combining the two-step structure
    CHEN PengLI JuhuNIU KaiWU Weiling Key Laboratory of Universal Wireless CommunicationsMinistry of EducationBeijing University of Posts and TelecommunicationsBeijing China
    The Journal of China Universities of Posts and Telecommunications, 2012, 19 (02) : 9 - 14
  • [48] A Two-Step Approach of Feature Construction for a Genetic Learning Algorithm
    Garcia, David
    Gonzalez, Antonio
    Perez, Raul
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1255 - 1262
  • [49] FEATURE THEORY AND THE TWO-STEP HYPOTHESIS OF MULLERIAN MIMICRY EVOLUTION
    Balogh, Alexandra Catherine Victoria
    Gamberale-Stille, Gabriella
    Tullberg, Birgitta Sillen
    Leimar, Olof
    EVOLUTION, 2010, 64 (03) : 810 - 822
  • [50] Two-Step Feature Extraction in A Transform Domain for Face Recognition
    Alobaidi, Taif
    Mikhael, Wasfy B.
    2017 IEEE 7TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE IEEE CCWC-2017, 2017,