Filter pruning-based two-step feature map reconstruction

被引:0
|
作者
Yongsheng Liang
Wei Liu
Shuangyan Yi
Huoxiang Yang
Zhenyu He
机构
[1] Harbin Institute of Technology,School of Computer Science and Technology
[2] Peng Cheng Laboratory,Research Center of Networks and Communications
[3] Shenzhen Institute of Information Technology,School of Software Engineering
[4] Shenzhen University,School of Electronics and Information Engineering
来源
关键词
Filter pruning; Channel pruning; Feature map reconstruction; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
In deep neural network compression, channel/filter pruning is widely used for compressing the pre-trained network by judging the redundant channels/filters. In this paper, we propose a two-step filter pruning method to judge the redundant channels/filters layer by layer. The first step is to design a filter selection scheme based on ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm by reconstructing the feature map of current layer. More specifically, the filter selection scheme aims to solve a joint ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm minimization problem, i.e., both the regularization term and feature map reconstruction error term are constrained by ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm. The ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm regularization plays a role in the channel/filter selection, while the ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm feature map reconstruction error term plays a role in the robust reconstruction. In this way, the proposed filter selection scheme can learn a column-sparse coefficient representation matrix that can indicate the redundancy of filters. Since pruning the redundant filters in current layer might dramatically influence the output feature map of the following layer, the second step needs to update the filters of the following layer to assure output of feature map approximates to that of baseline. Experimental results demonstrate the effectiveness of this proposed method. For example, our pruned VGG-16 on ImageNet achieves 4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times $$\end{document} speedup with 0.95% top-5 accuracy drop. Our pruned ResNet-50 on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.56% top-5 accuracy drop. Our pruned MobileNet on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.20% top-5 accuracy drop.
引用
收藏
页码:1555 / 1563
页数:8
相关论文
共 50 条
  • [31] A subgraph query algorithm based on two-step mapping on vertex to decision feature
    Li X.
    Li J.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (03): : 270 - 278
  • [32] Location and tracking algorithm based on two-step Kalman filter in NLOS environments
    Chen, Cheng
    Wang, Ping
    Xing, J. -C
    Zhang, Xun
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 6018 - 6022
  • [33] McTwo: a two-step feature selection algorithm based on maximal information coefficient
    Ruiquan Ge
    Manli Zhou
    Youxi Luo
    Qinghan Meng
    Guoqin Mai
    Dongli Ma
    Guoqing Wang
    Fengfeng Zhou
    BMC Bioinformatics, 17
  • [34] McTwo: a two-step feature selection algorithm based on maximal information coefficient
    Ge, Ruiquan
    Zhou, Manli
    Luo, Youxi
    Meng, Qinghan
    Mai, Guoqin
    Ma, Dongli
    Wang, Guoqing
    Zhou, Fengfeng
    BMC BIOINFORMATICS, 2016, 17
  • [35] An algorithm based on two-step Kalman filter for intelligent structural damage detection
    Lei, Ying
    Chen, Feng
    Zhou, Huan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2015, 22 (04): : 694 - 706
  • [36] Harmonic Detection for Active Power Filter Based on Two-Step Improved EEMD
    Wang, Rongkun
    Huang, Wenjie
    Hu, Bingtao
    Du, Quankai
    Guo, Xinhua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] Two-Step Parameter Estimation for Read Feature Models
    Erhard, Florian
    KUNSTLICHE INTELLIGENZ, 2024,
  • [38] A two-step particle filter for SLAM of corridor environment
    Zang, Yutong
    Yuan, Kui
    Zou, Wei
    Hu, Huosheng
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 370 - 375
  • [39] A two-step approach to multiple facial feature tracking: Temporal particle filter and spatial belief propagation
    Su, CY
    Zhuang, YT
    Huang, L
    Wu, F
    SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 433 - 438
  • [40] Filter pruning with a feature map entropy importance criterion for convolution neural networks compressing
    Wang, Jielei
    Jiang, Ting
    Cui, Zongyong
    Cao, Zongjie
    NEUROCOMPUTING, 2021, 461 : 41 - 54