Filter pruning-based two-step feature map reconstruction

被引:0
|
作者
Yongsheng Liang
Wei Liu
Shuangyan Yi
Huoxiang Yang
Zhenyu He
机构
[1] Harbin Institute of Technology,School of Computer Science and Technology
[2] Peng Cheng Laboratory,Research Center of Networks and Communications
[3] Shenzhen Institute of Information Technology,School of Software Engineering
[4] Shenzhen University,School of Electronics and Information Engineering
来源
关键词
Filter pruning; Channel pruning; Feature map reconstruction; -norm;
D O I
暂无
中图分类号
学科分类号
摘要
In deep neural network compression, channel/filter pruning is widely used for compressing the pre-trained network by judging the redundant channels/filters. In this paper, we propose a two-step filter pruning method to judge the redundant channels/filters layer by layer. The first step is to design a filter selection scheme based on ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm by reconstructing the feature map of current layer. More specifically, the filter selection scheme aims to solve a joint ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm minimization problem, i.e., both the regularization term and feature map reconstruction error term are constrained by ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm. The ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm regularization plays a role in the channel/filter selection, while the ℓ2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2,1}$$\end{document}-norm feature map reconstruction error term plays a role in the robust reconstruction. In this way, the proposed filter selection scheme can learn a column-sparse coefficient representation matrix that can indicate the redundancy of filters. Since pruning the redundant filters in current layer might dramatically influence the output feature map of the following layer, the second step needs to update the filters of the following layer to assure output of feature map approximates to that of baseline. Experimental results demonstrate the effectiveness of this proposed method. For example, our pruned VGG-16 on ImageNet achieves 4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times $$\end{document} speedup with 0.95% top-5 accuracy drop. Our pruned ResNet-50 on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.56% top-5 accuracy drop. Our pruned MobileNet on ImageNet achieves 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times $$\end{document} speedup with 1.20% top-5 accuracy drop.
引用
收藏
页码:1555 / 1563
页数:8
相关论文
共 50 条
  • [1] Filter pruning-based two-step feature map reconstruction
    Liang, Yongsheng
    Liu, Wei
    Yi, Shuangyan
    Yang, Huoxiang
    He, Zhenyu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1555 - 1563
  • [2] COMPARISON OF FILTER TECHNIQUES FOR TWO-STEP FEATURE SELECTION
    Drotar, Peter
    Simonak, Slavomir
    Pietrikova, Emilia
    Chovanec, Martin
    Chovancova, Eva
    Adam, Norbert
    Szabo, Csaba
    Balaz, Anton
    Binas, Miroslav
    COMPUTING AND INFORMATICS, 2017, 36 (03) : 597 - 617
  • [3] Filter pruning via feature map clustering
    Li, Wei
    He, Yongxing
    Zhang, Xiaoyu
    Tang, Yongchuan
    INTELLIGENT DATA ANALYSIS, 2023, 27 (04) : 911 - 933
  • [4] Filter Pruning via Measuring Feature Map Information
    Shao, Linsong
    Zuo, Haorui
    Zhang, Jianlin
    Xu, Zhiyong
    Yao, Jinzhen
    Wang, Zhixing
    Li, Hong
    SENSORS, 2021, 21 (19)
  • [5] Learning compact ConvNets through filter pruning based on the saliency of a feature map
    Liu, Zhoufeng
    Liu, Xiaohui
    Li, Chunlei
    Ding, Shumin
    Liao, Liang
    IET IMAGE PROCESSING, 2022, 16 (01) : 123 - 133
  • [6] Pruning-Based Sparse Recovery for Electrocardiogram Reconstruction from Compressed Measurements
    Lee, Jaeseok
    Kim, Kyungsoo
    Choi, Ji-Woong
    SENSORS, 2017, 17 (01):
  • [7] Distributed query optimization using two-step pruning
    Kim, H
    Lee, S
    Kim, HJ
    INFORMATION AND SOFTWARE TECHNOLOGY, 1997, 39 (03) : 149 - 169
  • [8] Two-step pruning: A distributed query optimization algorithm
    Kim, H
    Lee, SH
    Kim, HJ
    ADVANCES IN DATABASES, 1995, 940 : 183 - 203
  • [9] Feature Tracking by Two-Step Optimization
    Schnorr, Andrea
    Helmrich, Dirk N.
    Denker, Dominik
    Kuhlen, Torsten W.
    Hentschel, Bernd
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (06) : 2219 - 2233
  • [10] A two-step robust filter for mean line extraction based on the median filter
    Wang Lei
    Yuan Yibao
    Piao Weiying
    2015 FIFTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2015, : 25 - 28