Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures

被引:0
|
作者
M. Hasan
Y. Mao
K. Choudhary
F. Tavazza
A. Choudhary
A. Agrawal
P. Acar
机构
[1] Virginia Tech,
[2] Northwestern University,undefined
[3] National Institute of Standards and Technology,undefined
[4] Theiss Research,undefined
关键词
Data-driven modeling; Multi-scale modeling; Microstructure;
D O I
暂无
中图分类号
学科分类号
摘要
The present work addresses gradient-based and machine learning (ML)-driven design optimization methods to enhance homogenized linear and nonlinear properties of cubic microstructures. The study computes the homogenized properties as a function of underlying microstructures by linking atomistic-scale and meso-scale models. Here, the microstructure is represented by the orientation distribution function that determines the volume densities of crystallographic orientations. The homogenized property matrix in meso-scale is computed using the single-crystal property values that are obtained by density functional theory calculations. The optimum microstructure designs are validated with the available data in the literature. The single-crystal designs, as expected, are found to provide the extreme values of the linear properties, while the optimum values of the nonlinear properties could be provided by single or polycrystalline microstructures. However, polycrystalline designs are advantageous over single crystals in terms of better manufacturability. With this in mind, an ML-based sampling algorithm is presented to identify top optimum polycrystal solutions for both linear and nonlinear properties without compromising the optimum property values. Moreover, an inverse optimization strategy is presented to design microstructures for prescribed values of homogenized properties, such as the stiffness constant (C11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{11}$$\end{document}) and in-plane Young’s modulus (E11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}$$\end{document}). The applications are presented for aluminum (Al), nickel (Ni), and silicon (Si) microstructures.
引用
收藏
页码:230 / 240
页数:10
相关论文
共 50 条
  • [1] Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures
    Hasan, M.
    Mao, Y.
    Choudhary, K.
    Tavazza, F.
    Choudhary, A.
    Agrawal, A.
    Acar, P.
    [J]. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (02) : 230 - 240
  • [2] Multi-scale data-driven modeling and observation of calcium puffs
    Ullah, Ghanim
    Parker, Ian
    Mak, Don-On Daniel
    Pearson, John E.
    [J]. CELL CALCIUM, 2012, 52 (02) : 152 - 160
  • [3] Historical Data-Driven Multi-scale Quantum Harmonic Oscillator Optimization Algorithm
    Jin, Jin
    Wang, Peng
    [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (02): : 160 - 167
  • [4] A Proposal of Data-Driven and Multi-scale Modeling Approach for Material Flow Simulation
    Nagahara, Satoshi
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    [J]. ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING AND LOGISTICS SYSTEMS: TURNING IDEAS INTO ACTION, APMS 2022, PT II, 2022, 664 : 207 - 215
  • [5] Data-Driven Modelling of Biological Multi-Scale Processes
    Hasenauer, Jan
    Jagiella, Nick
    Hross, Sabrina
    Theis, Fabian J.
    [J]. JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2015, 3 (02) : 101 - 121
  • [6] Toward data-driven and multi-scale modeling for material flow simulation: Comparison of modeling methods
    Nagahara, Satoshi
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 7834 - 7839
  • [7] Toward Data-Driven and Multi-Scale Modeling for Material Flow Simulation: Characteristic Analysis of Modeling Methods
    Nagahara, Satoshi
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [8] Multi-scale data-driven engineering for biosynthetic titer improvement
    Cao, Zhixing
    Yu, Jiaming
    Wang, Weishan
    Lu, Hongzhong
    Xia, Xuekui
    Xu, Hui
    Yang, Xiuliang
    Bao, Lianqun
    Zhang, Qing
    Wang, Huifeng
    Zhang, Siliang
    Zhang, Lixin
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2020, 65 : 205 - 212
  • [9] A data-driven approach for multi-scale building archetypes development
    Ali, Usman
    Shamsi, Mohammad Haris
    Hoare, Cathal
    Mangina, Eleni
    O'Donnell, James
    [J]. ENERGY AND BUILDINGS, 2019, 202
  • [10] Atomistic-to-meso multi-scale data-driven graph surrogate modeling of dislocation glide
    de Moraes, Eduardo A. Barros
    Suzuki, Jorge L.
    Zayernouri, Mohsen
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 197