Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures

被引:0
|
作者
M. Hasan
Y. Mao
K. Choudhary
F. Tavazza
A. Choudhary
A. Agrawal
P. Acar
机构
[1] Virginia Tech,
[2] Northwestern University,undefined
[3] National Institute of Standards and Technology,undefined
[4] Theiss Research,undefined
关键词
Data-driven modeling; Multi-scale modeling; Microstructure;
D O I
暂无
中图分类号
学科分类号
摘要
The present work addresses gradient-based and machine learning (ML)-driven design optimization methods to enhance homogenized linear and nonlinear properties of cubic microstructures. The study computes the homogenized properties as a function of underlying microstructures by linking atomistic-scale and meso-scale models. Here, the microstructure is represented by the orientation distribution function that determines the volume densities of crystallographic orientations. The homogenized property matrix in meso-scale is computed using the single-crystal property values that are obtained by density functional theory calculations. The optimum microstructure designs are validated with the available data in the literature. The single-crystal designs, as expected, are found to provide the extreme values of the linear properties, while the optimum values of the nonlinear properties could be provided by single or polycrystalline microstructures. However, polycrystalline designs are advantageous over single crystals in terms of better manufacturability. With this in mind, an ML-based sampling algorithm is presented to identify top optimum polycrystal solutions for both linear and nonlinear properties without compromising the optimum property values. Moreover, an inverse optimization strategy is presented to design microstructures for prescribed values of homogenized properties, such as the stiffness constant (C11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{11}$$\end{document}) and in-plane Young’s modulus (E11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{11}$$\end{document}). The applications are presented for aluminum (Al), nickel (Ni), and silicon (Si) microstructures.
引用
收藏
页码:230 / 240
页数:10
相关论文
共 50 条
  • [31] SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems
    Draeger, Andreas
    Helikar, Tomas
    Barberis, Matteo
    Birtwistle, Marc
    Calzone, Laurence
    Chaouiya, Claudine
    Hasenauer, Jan
    Karr, Jonathan R.
    Niarakis, Anna
    Martinez, Maria Rodriguez
    Saez-Rodriguez, Julio
    Thakar, Juilee
    BIOINFORMATICS, 2021, 37 (21) : 3702 - 3706
  • [32] Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image Recovery
    Yuhui Quan
    Hui Ji
    Zuowei Shen
    Journal of Scientific Computing, 2015, 63 : 307 - 329
  • [33] Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image Recovery
    Quan, Yuhui
    Ji, Hui
    Shen, Zuowei
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (02) : 307 - 329
  • [34] Data-Driven Modeling and Global Optimization of Industrial-Scale Petrochemical Planning Operations
    Boukouvala, Fani
    Li, Jie
    Xiao, Xin
    Floudas, Christodoulos A.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3340 - 3345
  • [35] Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations
    Andreas Weiß
    Dimka Karastoyanova
    Computing, 2016, 98 : 439 - 467
  • [36] Enabling coupled multi-scale, multi-field experiments through choreographies of data-driven scientific simulations
    Weiss, Andreas
    Karastoyanova, Dimka
    COMPUTING, 2016, 98 (04) : 439 - 467
  • [37] Data-driven modeling and multi-objective optimization of a continuous kraft pulping digester
    Correa, Isabela B.
    de Souza Jr, Mauricio B.
    Secchi, Argimiro R.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 207 : 505 - 517
  • [38] Observational data-driven modeling and optimization of manufacturing processes
    Sadati, Najibesadat
    Chinnam, Ratna Babu
    Nezhad, Milad Zafar
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 : 456 - 464
  • [39] Multi-scale characterization of orthotropic microstructures
    Tschopp, M. A.
    Wilks, G. B.
    Spowart, J. E.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)
  • [40] Multi-scale optimization
    Lucia, A
    DiMaggio, PA
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING - 14, 2004, 18 : 1093 - 1098