Toward data-driven and multi-scale modeling for material flow simulation: Comparison of modeling methods

被引:0
|
作者
Nagahara, Satoshi [1 ,2 ]
Kaihara, Toshiya [2 ]
Fujii, Nobutada [2 ]
Kokuryo, Daisuke [2 ]
机构
[1] Hitachi Ltd, Ind Automat Res Dept, Yokoham, Kanagawa 2440817, Japan
[2] Kobe Univ, Grad Sch Syst Informat, Kobe, Hyogo 6578501, Japan
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Material flow simulation; queueing system; machine learning;
D O I
10.1016/j.ifacol.2023.10.1146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Material flow simulation is a powerful tool to realize efficient operation in complicated production systems such as high-mix and low-volume production. However, it takes significant efforts and expertise to construct accurate simulation models. We have proposed a semi-automatic modeling approach called as data-driven and multi-scale modeling in which various modeling methods are combined to maximize the simulation accuracy for entire production system. In this article, we introduce the overview of the proposed method and experimental results on simple production systems with multiple machines. Copyright (c) 2023 The Authors.
引用
收藏
页码:7834 / 7839
页数:6
相关论文
共 50 条
  • [1] Toward Data-Driven and Multi-Scale Modeling for Material Flow Simulation: Characteristic Analysis of Modeling Methods
    Nagahara, Satoshi
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [2] A Proposal of Data-Driven and Multi-scale Modeling Approach for Material Flow Simulation
    Nagahara, Satoshi
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    [J]. ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: SMART MANUFACTURING AND LOGISTICS SYSTEMS: TURNING IDEAS INTO ACTION, APMS 2022, PT II, 2022, 664 : 207 - 215
  • [3] Multi-scale data-driven modeling and observation of calcium puffs
    Ullah, Ghanim
    Parker, Ian
    Mak, Don-On Daniel
    Pearson, John E.
    [J]. CELL CALCIUM, 2012, 52 (02) : 152 - 160
  • [4] Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures
    M. Hasan
    Y. Mao
    K. Choudhary
    F. Tavazza
    A. Choudhary
    A. Agrawal
    P. Acar
    [J]. Integrating Materials and Manufacturing Innovation, 2022, 11 : 230 - 240
  • [5] Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures
    Hasan, M.
    Mao, Y.
    Choudhary, K.
    Tavazza, F.
    Choudhary, A.
    Agrawal, A.
    Acar, P.
    [J]. INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2022, 11 (02) : 230 - 240
  • [6] Magnetic Field Simulation With Data-Driven Material Modeling
    De Gersem, Herbert
    Galetzka, Armin
    Ion, Ion Gabriel
    Loukrezis, Dimitrios
    Roemer, Ulrich
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (08)
  • [7] MODELING MULTI-SCALE FLOW USING THE MATERIAL POINT METHOD
    Arduino, Pedro
    Mackenzie-Helnwein, Peter
    Miller, Gregory R.
    [J]. MULTISCALE AND MULTIPHYSICS PROCESSES IN GEOMECHANICS: RESULTS OF THE WORKSHOP ON MULTISCALE AND MULTIPHYSICS PROCESSES IN GEOMECHANICS, 2011, : 133 - 136
  • [8] Atomistic-to-meso multi-scale data-driven graph surrogate modeling of dislocation glide
    de Moraes, Eduardo A. Barros
    Suzuki, Jorge L.
    Zayernouri, Mohsen
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [9] Multi-scale computational modeling and simulation
    Kwon, Y. W.
    [J]. PROGRESS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2004, : 127 - 152
  • [10] Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow
    Nutkiewicz, Alex
    Yang, Zheng
    Jain, Rishee K.
    [J]. APPLIED ENERGY, 2018, 225 : 1176 - 1189