共 50 条
Planar heterojunction formamidinium lead-based perovskite solar cells with MXenes/Au electrode
被引:0
|作者:
Kapil Kumar
Pushpa Giri
机构:
[1] National Institute of Technology,Department of Electronics and Communication Engineering
来源:
关键词:
Band gap;
ETL;
HTL;
MXenes;
Performance conversion efficiency (;
);
Perovskite;
Spiro OMeTAD;
SCAPS-1D software;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Formamidinium (NH2CHNH2+) lead-based perovskite materials are becoming one of the suitable materials for planar heterojunction solar cell due to its wide bandgap tunability feature. In this work, simulation of formamidinium lead-based perovskite solar cell device is performed using SCAPS-1D software where bandgap of the absorber layer has been varied along with the other parameters like electron affinity, conduction & valence band effective density of states and thickness. With those variations, photovoltaic performance parameters e.g., open circuit voltage (VOC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_{OC}$$\end{document}), current density (JSC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_{SC}$$\end{document}), efficiency (η\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\eta$$\end{document}), fill factor (FF\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$FF$$\end{document}), and Quantum efficiency (QE\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$QE$$\end{document}) have been investigated. The effect of thickness variation of absorber layer, SnO2 and ZnO as a different ETL material and effect of gold (Au)/2-D MXenes Ti3C2Tx\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {{\text{Ti}}_{3} {\text{C}}_{2} {\text{T}}_{x} } \right)$$\end{document} as a rear electrode have been explored and depicted its effects on overall photovoltaic performance parameters. Further, the effects of series/shunt resistance (RSeriesandRShunt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{Series} {\text{and}} R_{Shunt}$$\end{document}) have also been simulated using SCAPS-1D software.
引用
收藏
相关论文