The moment problem for continuous positive semidefinite linear functionals

被引:0
|
作者
Mehdi Ghasemi
Salma Kuhlmann
Ebrahim Samei
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
[2] Universitãt Konstanz,Fachbereich Mathematik und Statistik
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 14P99; 44A60; Secondary 12D15; 43A35; 46B99; Positive polynomials; Sums of squares; Real algebraic geometry; Moment problem; Weighted norm topologies;
D O I
暂无
中图分类号
学科分类号
摘要
Let τ be a locally convex topology on the countable dimensional polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} -algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}] := \mathbb{R} [X_1, \ldots, X_{n}]}$$\end{document} . Let K be a closed subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^{n}}$$\end{document} , and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M := M_{\{g_1, \ldots, g_s\}}}$$\end{document} be a finitely generated quadratic module in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}]}$$\end{document} . We investigate the following question: When is the cone Psd(K) (of polynomials nonnegative on K) included in the closure of M? We give an interpretation of this inclusion with respect to representing continuous linear functionals by measures. We discuss several examples; we compute the closure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M = \sum \mathbb{R} [\underline{X}]^{2}}$$\end{document} with respect to weighted norm-p topologies. We show that this closure coincides with the cone Psd(K) where K is a certain convex compact polyhedron.
引用
收藏
页码:43 / 53
页数:10
相关论文
共 50 条