On the exceptional sets in Sylvester expansions*

被引:0
|
作者
Meiying Lü
机构
[1] Chongqing Normal University,School of Mathematical Sciences
来源
关键词
Sylvester expansion; exceptional set; Hausdorff dimension; 11K55; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
For any x 𝜖 (0, 1], let the series ∑n=1∞1/dnx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum}_{n=1}^{\infty }1/{d}_n(x) $$\end{document} be the Sylvester expansion of x, where {dj(x), j ≥ 1} is a sequence of positive integers satisfying d1(x) ≥ 2 and dj + 1(x) ≥ dj(x)(dj(x) − 1) + 1 for j ≥ 1. Suppose ϕ : ℕ → ℝ+ is a function satisfying ϕ(n+1) – ϕ (n) → ∞ as n → ∞. In this paper, we consider the setEϕ=x∈01:limn→∞logdnx−∑j=1n−1logdjxϕn=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$\end{document}
引用
收藏
页码:48 / 53
页数:5
相关论文
共 50 条