Maximal essential extensions in the context of frames

被引:0
|
作者
Richard N. Ball
Aleš Pultr
机构
[1] University of Denver,Department of Mathematics
[2] Charles University,Department of Applied Mathematics and CE
来源
Algebra universalis | 2018年 / 79卷
关键词
Frame; Sublocale; Essential extension; 06D22; 54A05; 18A22;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding L→N(L)→BN(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow \mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)$$\end{document}, where L→N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow \mathcal {N}(L)$$\end{document} is the familiar embedding of L into its congruence frame N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L)$$\end{document}, and N(L)→BN(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)$$\end{document} is the Booleanization of N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L)$$\end{document}. Finally, we show that for subfit frames the extension can also be realized as the embedding L→Sc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow {{\mathrm{S}}}_\mathfrak {c}(L)$$\end{document} of L into its complete Boolean algebra Sc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{S}}}_\mathfrak {c}(L)$$\end{document} of sublocales which are joins of closed sublocales.
引用
收藏
相关论文
共 50 条
  • [1] Maximal essential extensions in the context of frames
    Ball, Richard N.
    Pultr, Ales
    ALGEBRA UNIVERSALIS, 2018, 79 (02)
  • [2] ON MAXIMAL ESSENTIAL EXTENSIONS OF RINGS
    Andruszkiewicz, R. R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (02) : 329 - 337
  • [3] On iterated maximal essential extensions of rings
    Andruszkiewicz, RR
    ALGEBRA COLLOQUIUM, 2002, 9 (03) : 241 - 258
  • [4] Generalized iterated maximal essential extensions of rings
    Andruszkiewicz, RR
    ALGEBRA COLLOQUIUM, 2003, 10 (01) : 109 - 120
  • [5] MAXIMAL FRATTINI EXTENSIONS
    COSSEY, J
    KEGEL, OH
    KOVACS, LG
    ARCHIV DER MATHEMATIK, 1980, 35 (03) : 210 - 217
  • [6] ON MAXIMAL COMPACT FRAMES
    Jayaprasad, P. N.
    Namboothiri, Madhavan N. M.
    Santhosh, P. K.
    Jacob, Varghese
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (03): : 493 - 499
  • [7] MAXIMAL ABELIAN EXTENSIONS VIEWED AS KUMMER EXTENSIONS
    ALBISGONZALEZ, V
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A69 - A70
  • [8] Rigid extensions of algebraic frames
    Papiya Bhattacharjee
    Algebra universalis, 2009, 62 : 133 - 149
  • [9] On epi-extensions of frames
    Chen, X
    ALGEBRA UNIVERSALIS, 1996, 35 (02) : 197 - 201
  • [10] Rigid extensions of algebraic frames
    Bhattacharjee, Papiya
    ALGEBRA UNIVERSALIS, 2009, 62 (01) : 133 - 149