ON MAXIMAL COMPACT FRAMES

被引:0
|
作者
Jayaprasad, P. N. [1 ]
Namboothiri, Madhavan N. M. [1 ]
Santhosh, P. K. [2 ]
Jacob, Varghese [1 ]
机构
[1] Govt Coll Kottayam, Dept Math, Kottayam, Kerala, India
[2] Govt Engn Coll, Dept Appl Sci, Kozhicode, Kerala, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2021年 / 29卷 / 03期
关键词
Frame; locale; spatial frame; maximal compact frame; subframe; sublocale;
D O I
10.11568/kjm.2021.29.3.493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every closed subset of a compact topological space is compact. Also every compact subset of a Hausdorff topological space is closed. It follows that compact subsets are precisely the closed subsets in a compact Hausdorff space. It is also proved that a topological space is maximal compact if and only if its compact subsets are precisely the closed subsets. A locale is a categorical extension of topological spaces and a frame is an object in its opposite category. We investigate to find whether the closed sublocales are exactly the compact sublocales of a compact Hausdorff frame. We also try to investigate whether the closed sublocales are exactly the compact sublocales of a maximal compact frame.
引用
收藏
页码:493 / 499
页数:7
相关论文
共 50 条
  • [1] T2-FRAMES AND ALMOST COMPACT FRAMES
    PASEKA, J
    SMARDA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1992, 42 (03) : 385 - 402
  • [2] Maximal essential extensions in the context of frames
    Ball, Richard N.
    Pultr, Ales
    ALGEBRA UNIVERSALIS, 2018, 79 (02)
  • [3] Maximal essential extensions in the context of frames
    Richard N. Ball
    Aleš Pultr
    Algebra universalis, 2018, 79
  • [4] Compact Hausdorff Approach Frames
    Bernhard Banaschewski
    Robert Lowen
    Christophe Van Olmen
    Order, 2012, 29 : 105 - 118
  • [5] Compact Hausdorff Approach Frames
    Banaschewski, Bernhard
    Lowen, Robert
    Van Olmen, Christophe
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (01): : 105 - 118
  • [6] SPECTRA OF COMPACT REGULAR FRAMES
    Bezhanishvili, Guram
    Gabelaia, David
    Jibladze, Mamuka
    THEORY AND APPLICATIONS OF CATEGORIES, 2016, 31 : 365 - 383
  • [7] Maximal Soft Compact and Maximal Soft Connected Topologies
    Al Ghour, Samer
    Ameen, Zanyar A.
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [8] Characterizing maximal compact subgroups
    Antonyan, Sergey A.
    ARCHIV DER MATHEMATIK, 2012, 98 (06) : 555 - 560
  • [9] MAXIMAL IDEALS IN COMPACT SEMIGROUPS
    KOCH, RJ
    WALLACE, AD
    DUKE MATHEMATICAL JOURNAL, 1954, 21 (04) : 681 - 685
  • [10] MAXIMAL FEEBLY COMPACT SPACES
    PORTER, JR
    STEPHENSON, RM
    WOODS, RG
    TOPOLOGY AND ITS APPLICATIONS, 1993, 52 (03) : 203 - 219