MAXIMAL FEEBLY COMPACT SPACES

被引:0
|
作者
PORTER, JR
STEPHENSON, RM
WOODS, RG
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[2] UNIV S CAROLINA,COLUMBIA,SC 29208
[3] UNIV MANITOBA,DEPT MATH,WINNIPEG R3T 2N2,MANITOBA,CANADA
关键词
MAXIMAL FEEBLY COMPACT; SUBMAXIMAL TOPOLOGY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maximal feebly compact spaces (i.e., feebly compact spaces possessing no strictly stronger feebly compact topology) are characterized, as are special classes (countably compact, semiregular, regular) of maximal feebly compact spaces.
引用
收藏
页码:203 / 219
页数:17
相关论文
共 50 条
  • [1] Maximal feebly compact expansions
    Porter, JR
    Stephenson, RM
    Woods, RG
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS: NINTH SUMMER CONFERENCE AT SLIPPERY ROCK UNIVERSITY, 1995, 767 : 168 - 187
  • [2] PRODUCT THEOREMS IN CLASSES OF FEEBLY COMPACT SPACES
    Alas, Ofelia T.
    Martinez-Cadena, J. A.
    Wilson, Richard G.
    HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (02): : 409 - 425
  • [3] COMPACT SPACES AND SPACES OF MAXIMAL COMPLETE SUBGRAPHS
    BELL, M
    GINSBURG, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 283 (01) : 329 - 338
  • [4] On feebly compact paratopological groups
    Banakh, Taras
    Ravsky, Alex
    TOPOLOGY AND ITS APPLICATIONS, 2020, 284
  • [5] Maximal countably compact spaces and embeddings in MP-spaces
    V. V. Tkachuk
    R. G. Wilson
    Acta Mathematica Hungarica, 2015, 145 : 191 - 204
  • [6] Maximal countably compact spaces and embeddings in MP-spaces
    Tkachuk, V. V.
    Wilson, R. G.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 191 - 204
  • [7] MOORE-CLOSED AND 1ST COUNTABLE FEEBLY COMPACT EXTENSION SPACES
    STEPHENSON, RM
    TOPOLOGY AND ITS APPLICATIONS, 1987, 27 (01) : 11 - 28
  • [8] Maximal metrizable remainders of locally compact spaces
    Chatyrko, Vitalij A.
    Karassev, Alexandre
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (11) : 1292 - 1297
  • [9] Epimorphisms and maximal covers in categories of compact spaces
    Banasciiewski, B.
    Hager, A. W.
    APPLIED GENERAL TOPOLOGY, 2013, 14 (01): : 41 - 52
  • [10] COMPACT 2-MANIFOLDS AS MAXIMAL IDEAL SPACES
    BRANDSTE.AG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) : 498 - 500