An extension G ≤ H of lattice-ordered groups is said to be a rigid extension if for each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h \in H}$$\end{document} there exists a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${g \in G}$$\end{document} such that h⊥⊥ = g⊥⊥. In this paper, we will define rigid extensions and some other generalizations in the context of algebraic frames satisfying the FIP. One of the main results is a characterization of rigid extensions using d-elements of the frame. We also show that a rigid extension between two algebraic frames satisfying the FIP will induce a homeomorphism between their corresponding minimal prime spaces with respect to both the hull-kernel topology and the inverse topology. Moreover, basic open sets map to basic open sets.