Rigid extensions of algebraic frames

被引:0
|
作者
Papiya Bhattacharjee
机构
[1] Penn State Erie - The Behrend College,School of Science
来源
Algebra universalis | 2009年 / 62卷
关键词
Compact Element; Frame Theory; Frame Homomorphism; Algebraic Frame; Pairwise Disjoint Element;
D O I
暂无
中图分类号
学科分类号
摘要
An extension G ≤ H of lattice-ordered groups is said to be a rigid extension if for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h \in H}$$\end{document} there exists a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g \in G}$$\end{document} such that h⊥⊥ = g⊥⊥. In this paper, we will define rigid extensions and some other generalizations in the context of algebraic frames satisfying the FIP. One of the main results is a characterization of rigid extensions using d-elements of the frame. We also show that a rigid extension between two algebraic frames satisfying the FIP will induce a homeomorphism between their corresponding minimal prime spaces with respect to both the hull-kernel topology and the inverse topology. Moreover, basic open sets map to basic open sets.
引用
收藏
页码:133 / 149
页数:16
相关论文
共 50 条