Asymptotic formulas of the eigenvalues for the linearization of a one-dimensional sinh-Poisson equation

被引:0
|
作者
Shuya Aizawa
Yasuhito Miyamoto
Tohru Wakasa
机构
[1] The University of Tokyo,Department of Integrated Science, College of Arts and Science
[2] The University of Tokyo,Graduate School of Mathematical Sciences
[3] Kyushu Institute of Technology,Department of Basic Sciences
关键词
Exact eigenvalues; Exact solutions; Jacobi elliptic functions; Complete elliptic integrals; Primary 34L15; 35K57; Secondary 34K18; 34K27;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with a Neumann problem of a one-dimensional sinh-Poisson equation u′′+λsinhu=0for0<x<1,u′(0)=u′(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u''+\lambda \sinh u=0 &{} \text {for}\ 0<x<1,\\ u'(0)=u'(1)=0, \end{array}\right. } \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter. A complete bifurcation diagram of this problem is obtained. We also consider the linearized eigenvalue problem at every nontrivial solution u. We derive exact expressions of all the eigenvalues and eigenfunctions, using Jacobi elliptic functions and complete elliptic integrals. Then, we also derive asymptotic formulas of eigenvalues as λ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow 0$$\end{document}. Exact eigenvalues and eigenfunctions for a Dirichlet problem are presented without proof. The main technical tool is an ODE technique.
引用
收藏
页码:1043 / 1070
页数:27
相关论文
共 50 条
  • [1] Asymptotic formulas of the eigenvalues for the linearization of a one-dimensional sinh-Poisson equation
    Aizawa, Shuya
    Miyamoto, Yasuhito
    Wakasa, Tohru
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 1043 - 1070
  • [2] Sign-Changing Solutions for the One-Dimensional Non-Local sinh-Poisson Equation
    Dela Torre, Azahara
    Mancini, Gabriele
    Pistoia, Angela
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 739 - 767
  • [3] SOLUTIONS OF TWO-DIMENSIONAL SINH-POISSON EQUATION
    CHEN, HH
    TING, AC
    LEE, YC
    PHYSICA D-NONLINEAR PHENOMENA, 1984, 11 (03) : 400 - 400
  • [4] Asymptotic formulas of the eigenvalues for the linearization of the scalar field equation
    Miyamoto, Yasuhito
    Takemura, Haruki
    Wakasa, Tohru
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [5] RELAXATION IN 2 DIMENSIONS AND THE SINH-POISSON EQUATION
    MONTGOMERY, D
    MATTHAEUS, WH
    STRIBLING, WT
    MARTINEZ, D
    OUGHTON, S
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (01): : 3 - 6
  • [6] ON THE NUMBER OF NODAL BUBBLING SOLUTIONS TO A SINH-POISSON EQUATION
    Wei, Long
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (01): : 291 - 326
  • [7] Inviscid two dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation
    Chow, KW
    Ko, NWM
    Leung, RCK
    Tang, SK
    PHYSICS OF FLUIDS, 1998, 10 (05) : 1111 - 1119
  • [8] EXPLICIT EXACT SOLUTIONS TO THE (2+1) DIMENSIONAL SINH-POISSON EQUATION
    Xie, Yuanxi
    Peng, Shiyu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (17): : 3395 - 3409
  • [9] Multiple Blow-Up Phenomena for the Sinh-Poisson Equation
    Massimo Grossi
    Angela Pistoia
    Archive for Rational Mechanics and Analysis, 2013, 209 : 287 - 320
  • [10] NUMERICAL-CALCULATION OF NONUNIQUE SOLUTIONS OF A 2-DIMENSIONAL SINH-POISSON EQUATION
    MCDONALD, BE
    JOURNAL OF COMPARATIVE PHYSIOLOGY, 1974, 16 (04): : 360 - 370