Dyadic bivariate wavelet multipliers in L2(ℝ2)

被引:0
|
作者
Zhong Yan Li
Xian Liang Shi
机构
[1] Hu’nan Normal University,College of Mathematics and Computer Science
[2] North China Electric Power University,Department of Mathematics and Physics
关键词
Dyadic bivariate wavelet; dyadic bivariate wavelet multiplier; dyadic MRA bivariate wavelet; dyadic low pass filter; Haar type dyadic wavelet; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA| = 2) wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L2(ℝ2). In this paper, we choose \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2I_2 = \left( {\begin{array}{*{20}c} 2 & 0 \\ 0 & 2 \\ \end{array} } \right)$\end{document} as the dilation matrix and consider the 2I2-dilation multivariate wavelet Φ = {ψ1, ψ2, ψ3}(which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f = {f1, f2, f3} a dyadic bivariate wavelet multiplier if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Psi _1 = \left\{ {\mathcal{F}^{ - 1} \left( {f_1 \widehat{\psi _1 }} \right),\mathcal{F}^{ - 1} \left( {f_2 \widehat{\psi _2 }} \right),\mathcal{F}^{ - 1} \left( {f_3 \widehat{\psi _3 }} \right)} \right\}$\end{document} is a dyadic bivariate wavelet for any dyadic bivariate wavelet Φ = {ψ1, ψ2, ψ3}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat f$\end{document} and F−1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.
引用
收藏
页码:1489 / 1500
页数:11
相关论文
共 50 条