Dyadic bivariate wavelet multipliers in L2(ℝ2)

被引:0
|
作者
Zhong Yan Li
Xian Liang Shi
机构
[1] Hu’nan Normal University,College of Mathematics and Computer Science
[2] North China Electric Power University,Department of Mathematics and Physics
关键词
Dyadic bivariate wavelet; dyadic bivariate wavelet multiplier; dyadic MRA bivariate wavelet; dyadic low pass filter; Haar type dyadic wavelet; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
The single 2 dilation wavelet multipliers in one-dimensional case and single A-dilation (where A is any expansive matrix with integer entries and |detA| = 2) wavelet multipliers in twodimensional case were completely characterized by Wutam Consortium (1998) and Li Z., et al. (2010). But there exist no results on multivariate wavelet multipliers corresponding to integer expansive dilation matrix with the absolute value of determinant not 2 in L2(ℝ2). In this paper, we choose \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2I_2 = \left( {\begin{array}{*{20}c} 2 & 0 \\ 0 & 2 \\ \end{array} } \right)$\end{document} as the dilation matrix and consider the 2I2-dilation multivariate wavelet Φ = {ψ1, ψ2, ψ3}(which is called a dyadic bivariate wavelet) multipliers. Here we call a measurable function family f = {f1, f2, f3} a dyadic bivariate wavelet multiplier if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Psi _1 = \left\{ {\mathcal{F}^{ - 1} \left( {f_1 \widehat{\psi _1 }} \right),\mathcal{F}^{ - 1} \left( {f_2 \widehat{\psi _2 }} \right),\mathcal{F}^{ - 1} \left( {f_3 \widehat{\psi _3 }} \right)} \right\}$\end{document} is a dyadic bivariate wavelet for any dyadic bivariate wavelet Φ = {ψ1, ψ2, ψ3}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat f$\end{document} and F−1 denote the Fourier transform and the inverse transform of function f respectively. We study dyadic bivariate wavelet multipliers, and give some conditions for dyadic bivariate wavelet multipliers. We also give concrete forms of linear phases of dyadic MRA bivariate wavelets.
引用
收藏
页码:1489 / 1500
页数:11
相关论文
共 50 条
  • [31] Bivariate Sign Tests Based on the Sup, L1 and L2 Norms
    Denis Larocque
    Serge Tardif
    Constance van Eeden
    [J]. Annals of the Institute of Statistical Mathematics, 2000, 52 : 488 - 506
  • [32] L2,z ⊗ L2,Z does not embed in L2,z
    Brownlowe, Nathan
    Sorensen, Adam P. W.
    [J]. JOURNAL OF ALGEBRA, 2016, 456 : 1 - 22
  • [33] Operator-Like Wavelet Bases of L2(Rd)
    Khalidov, Ildar
    Unser, Michael
    Ward, John Paul
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) : 1294 - 1322
  • [34] On generalized inequalities for nonuniform wavelet frames in L2(K)
    Ahmad, Owais
    Sheikh, Neyaz A.
    Hazari, Abid Ayub
    [J]. AFRIKA MATEMATIKA, 2022, 33 (01)
  • [35] INEQUALITIES FOR WAVELET FRAMES WITH COMPOSITE DILATIONS IN L2(Rn)
    Ahmad, Owais
    Sheikh, Neyaz A.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (01) : 31 - 41
  • [36] Construction of nonseparable dual Ω-wavelet frames in L2 (Rs)
    Li, Youfa
    Yang, Shouzhi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) : 2082 - 2094
  • [38] Steerable Pyramids and Tight Wavelet Frames in L2(Rd)
    Unser, Michael
    Chenouard, Nicolas
    Van De Ville, Dimitri
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (10) : 2705 - 2721
  • [39] Tracking learnables and teachables in L2 Arabic dyadic conversations-for-learning
    Al Masaeed, Khaled
    [J]. MODERN LANGUAGE JOURNAL, 2023, 107 (03): : 782 - 801
  • [40] Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w)
    Beznosova, Oleksandra V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) : 994 - 1007