Convolutional Shrinkage Neural Networks Based Model-Agnostic Meta-Learning for Few-Shot Learning

被引:0
|
作者
Yunpeng He
Chuanzhi Zang
Peng Zeng
Qingwei Dong
Ding Liu
Yuqi Liu
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Robotics, Shenyang Institute of Automation
[2] Chinese Academy of Sciences,Key Laboratory of Networked Control Systems
[3] Chinese Academy of Sciences,Institutes for Robotics and Intelligent Manufacturing
[4] University of Chinese Academy of Sciences,undefined
[5] Shenyang University of Technology,undefined
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Meta learning; Few-shot learning; Residual networks; Soft thresholding;
D O I
暂无
中图分类号
学科分类号
摘要
Meta Learning (ML) has the ability to quickly learn from a small number of samples, and has become an important research field after reinforcement learning. However, the complexity of sample features severely reduces the performance of few-shot learning, and proper feature selection plays a vital role in the performance of neural networks. To address this problem, this article draws up a new type of convolutional neural network with an attention mechanism, namely, convolutional shrinkage neural networks (CSNNs), using the characteristics of negligible noise to obtain a good optimization parameter model. Moreover, soft thresholding is inserted into the network architectures as nonlinear transformation layers to eliminate nonessential features. In addition, considering that it is difficult to set appropriate values for the thresholds, the developed convolutional shrinkage neural networks integrates some specialized neural networks into trainable modules to automatically set the thresholds. To illustrate the effectiveness of the proposed method, the model-agnostic meta-learning method is considered for testing. The results show that the improved method can significantly improve the accuracy of few-shot images classification and enhance the generalization performance.
引用
收藏
页码:505 / 518
页数:13
相关论文
共 50 条
  • [31] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [32] Differentiable Meta-Learning Model for Few-Shot Semantic Segmentation
    Tian, Pinzhuo
    Wu, Zhangkai
    Qi, Lei
    Wang, Lei
    Shi, Yinghuan
    Gao, Yang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12087 - 12094
  • [33] Combining Model-Agnostic Meta-Learning and Transfer Learning for Regression
    Satrya, Wahyu Fadli
    Yun, Ji-Hoon
    SENSORS, 2023, 23 (02)
  • [34] Few-Shot Learning on Graph Convolutional Network Based on Meta learning
    Liu X.-L.
    Feng L.
    Liao L.-X.
    Gong X.
    Su H.
    Wang J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 885 - 897
  • [35] PERSONALIZED FACE AUTHENTICATION BASED ON FEW-SHOT META-LEARNING
    Shin, Chaehun
    Lee, Jangho
    Na, Byunggook
    Yoon, Sungroh
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3897 - 3901
  • [36] DOMAIN-AGNOSTIC META-LEARNING FOR CROSS-DOMAIN FEW-SHOT CLASSIFICATION
    Lee, Wei-Yu
    Wang, Jheng-Yu
    Wang, Yu-Chiang Frank
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1715 - 1719
  • [37] Few-Shot Classification Based on Sparse Dictionary Meta-Learning
    Jiang, Zuo
    Wang, Yuan
    Tang, Yi
    MATHEMATICS, 2024, 12 (19)
  • [38] Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
    Goldblum, Micah
    Fowl, Liam
    Goldstein, Tom
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [39] Stress Testing of Meta-learning Approaches for Few-shot Learning
    Aimen, Aroof
    Sidheekh, Sahil
    Madan, Vineet
    Krishnan, Narayanan C.
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 38 - 44
  • [40] MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning
    Zhang, Baoquan
    Luo, Chuyao
    Yu, Demin
    Li, Xutao
    Lin, Huiwei
    Ye, Yunming
    Zhang, Bowen
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16687 - 16695