Pan-location mapping and localization for the in-situ science exploration of Zhurong Mars rover

被引:0
|
作者
Xingguo Zeng
Jianjun Liu
Xin Ren
Wei Yan
Qiang Fu
Xingye Gao
Wangli Chen
Wei Zuo
Chunlai Li
机构
[1] Chinese Academy of Sciences,Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories
[2] University of Chinese Academy of Sciences,School of Astronomy and Space Science
来源
关键词
pan-location mapping; planetary exploration; geo-visualization; Tianwen-1 mission; Zhurong rover;
D O I
暂无
中图分类号
学科分类号
摘要
On May 15, 2021, Tianwen-1 successfully landed in the Utopia Planitia of Mars, and its rover Zhurong began to carry out an in-situ science exploration of the Mars surface. To determine the location, driving direction, and exploration targets of the rover, it is necessary to provide decision support for the in-situ science exploration of the rover and ensure the achievement of the scientific objectives, which pose significant challenges to the ground science team. Based on the classical research on Lunar and planetary localization, navigation and exploration target selection, and the recent study of pan-location cartographic theory, a pan-location mapping method for an in-situ rover exploration is proposed. In addition, a pan-location reference system, mapping data model, and mapping method are designed to realize the localization and visualization of the landing platform, rover, and exploration targets. The mapping method has been successfully applied to the localization, navigation, and science exploration of the target selection involved in the in-situ exploration of the Zhurong rover. The results of this study not only provide vital support to the implementation of the Tianwen-1 mission; they can also be used as instructions for other future in-situ Lunar and planetary exploration missions.
引用
收藏
相关论文
共 50 条
  • [31] Integration of In-Situ Resource Utilization into lunar/Mars exploration through field analogs
    Sanders, Gerald B.
    Larson, William E.
    ADVANCES IN SPACE RESEARCH, 2011, 47 (01) : 20 - 29
  • [32] In Situ Geologic Context Mapping Transect on the Floor of Jezero Crater From Mars 2020 Perseverance Rover Observations
    Crumpler, L. S.
    Horgan, B. H. N.
    Simon, J. I.
    Stack, K. M.
    Alwmark, S.
    Gilles, D.
    Wiens, R. C.
    Udry, A.
    Brown, A. J.
    Russell, P.
    Amundson, H. E. F.
    Hamran, S. -E.
    Bell III, J.
    Shuster, D.
    Calef III, F. J.
    Nunez, J.
    Cohen, B. A.
    Flannery, D.
    Herd, C. D. K.
    Hand, K. P.
    Maki, J. N.
    Schmidt, M.
    Golombek, M. P.
    Williams, N. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2023, 128 (10)
  • [33] Comparing Apollo and Mars Exploration Rover (MER)/phoenix operations paradigms for human exploration during NASA Desert-RATS science operations
    Yingst, R. A.
    Cohen, B. A.
    Ming, D. W.
    Eppler, D. B.
    ACTA ASTRONAUTICA, 2013, 90 (02) : 311 - 317
  • [34] In-situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
    Robinson, M.
    Collins, C.
    Leger, P.
    Carsten, J.
    Tompkins, V.
    Hartman, F.
    Yen, J.
    2013 8TH INTERNATIONAL CONFERENCE ON SYSTEM OF SYSTEMS ENGINEERING (SOSE), 2013, : 153 - 158
  • [35] A Laser-Induced Breakdown Spectroscopy (LIBS) Instrument for In-Situ Exploration with the DLR Lightweight Rover Unit (LRU)
    Schroeder, Susanne
    Seel, Fabian
    Dietz, Enrico
    Frohmann, Sven
    Hansen, Peder Bagge
    Lehner, Peter
    Prince, Andre Fonseca
    Sakagami, Ryo
    Vodermayer, Bernhard
    Wedler, Armin
    Boerner, Anko
    Huebers, Heinz-Wilhelm
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [36] Production and test procedures for in-situ Mars concrete research: A case study for on-ground Mars constructions in Jezero Crater according to MEDA data from 2020 perseverance Mars rover
    Maras, Muslum Murat
    Ates, Abdullah
    Alagoz, Baris Baykant
    ADVANCES IN SPACE RESEARCH, 2025, 75 (06) : 5124 - 5141
  • [37] In-situ indoor 3-D land mapping and radioactive source localization
    Nguyen Van Thai
    Chen, Liang-Chia
    2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 1404 - 1409
  • [38] IN-SITU LOCALIZATION AND CHROMOSOMAL MAPPING OF THE AG1 (DMP1) GENE
    GEORGE, A
    GUI, JX
    JENKINS, NA
    GILBERT, DJ
    COPELAND, NG
    VEIS, A
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1994, 42 (12) : 1527 - 1531
  • [39] A composite manipulator utilizing rotary piezoelectric motors: New robotic technologies for Mars in-situ planetary science
    Schenker, PS
    BarCohen, Y
    Brown, DK
    Lindemann, RA
    Garrett, MS
    Baumgartner, ET
    Lee, S
    Lih, SS
    Joffe, B
    SMART STRUCTURES AND INTEGRATED SYSTEMS - SMART STRUCTURES AND MATERIALS 1997, 1997, 3041 : 918 - 926
  • [40] Pre-landing plans for Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) science operations
    McClean, John B.
    Hoffman, Jeffrey A.
    Hecht, Michael H.
    Aboobaker, Asad M.
    Araghi, Koorosh R.
    Elangovan, S.
    Graves, Christopher R.
    Hartvigsen, Joseph J.
    Hinterman, Eric D.
    Liu, Andrew M.
    Meyen, Forrest E.
    Nasr, Maya
    Ponce, Adrian
    Rapp, Donald
    SooHoo, Jason G.
    Swoboda, John
    Voecks, Gerald E.
    ACTA ASTRONAUTICA, 2022, 192 : 301 - 313