Pan-location mapping and localization for the in-situ science exploration of Zhurong Mars rover

被引:0
|
作者
Xingguo Zeng
Jianjun Liu
Xin Ren
Wei Yan
Qiang Fu
Xingye Gao
Wangli Chen
Wei Zuo
Chunlai Li
机构
[1] Chinese Academy of Sciences,Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories
[2] University of Chinese Academy of Sciences,School of Astronomy and Space Science
来源
关键词
pan-location mapping; planetary exploration; geo-visualization; Tianwen-1 mission; Zhurong rover;
D O I
暂无
中图分类号
学科分类号
摘要
On May 15, 2021, Tianwen-1 successfully landed in the Utopia Planitia of Mars, and its rover Zhurong began to carry out an in-situ science exploration of the Mars surface. To determine the location, driving direction, and exploration targets of the rover, it is necessary to provide decision support for the in-situ science exploration of the rover and ensure the achievement of the scientific objectives, which pose significant challenges to the ground science team. Based on the classical research on Lunar and planetary localization, navigation and exploration target selection, and the recent study of pan-location cartographic theory, a pan-location mapping method for an in-situ rover exploration is proposed. In addition, a pan-location reference system, mapping data model, and mapping method are designed to realize the localization and visualization of the landing platform, rover, and exploration targets. The mapping method has been successfully applied to the localization, navigation, and science exploration of the target selection involved in the in-situ exploration of the Zhurong rover. The results of this study not only provide vital support to the implementation of the Tianwen-1 mission; they can also be used as instructions for other future in-situ Lunar and planetary exploration missions.
引用
收藏
相关论文
共 50 条
  • [21] Challenges in 3D visualization for Mars Exploration Rover mission science planning
    Vona, MA
    Backes, PG
    Norris, JS
    Powell, MW
    2003 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-8, 2003, : 3541 - 3551
  • [22] The science activity planner for the Mars Exploration Rover mission: FIDO field test results
    Backes, PG
    Norris, JS
    Powell, MW
    Vona, MA
    Steinke, R
    Wick, J
    2003 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-8, 2003, : 3525 - 3539
  • [23] An Automaton Rover Enabling Long Duration In-Situ Science in Extreme Environments
    Sauder, Jonathan
    Hilgemann, Evan
    Bienstock, Bernard
    Parness, Aaron
    2017 IEEE AEROSPACE CONFERENCE, 2017,
  • [24] Planetary Rover Exploration Combining Remote and In Situ Measurements for Active Spectroscopic Mapping
    Candela, Alberto
    Kodgule, Suhit
    Edelson, Kevin
    Vijayarangan, Srinivasan
    Thompson, David R.
    Dobrea, Eldar Noe
    Wettergreen, David
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5986 - 5993
  • [25] Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations
    Crumpler, L. S.
    Arvidson, R. E.
    Squyres, S. W.
    McCoy, T.
    Yingst, A.
    Ruff, S.
    Farrand, W.
    McSween, Y.
    Powell, M.
    Ming, D. W.
    Morris, R. V.
    Bell, J. F., III
    Grant, J.
    Greeley, R.
    DesMarais, D.
    Schmidt, M.
    Cabrol, N. A.
    Haldemann, A.
    Lewis, Kevin W.
    Wang, A. E.
    Schroeder, C.
    Blaney, D.
    Cohen, B.
    Yen, A.
    Farmer, J.
    Gellert, R.
    Guinness, E. A.
    Herkenhoff, K. E.
    Johnson, J. R.
    Klingelhoefer, G.
    McEwen, A.
    Rice, J. W., Jr.
    Rice, M.
    deSouza, P.
    Hurowitz, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
  • [26] Integrated in-situ resource utilization system design and logistics for Mars exploration
    Chen, Hao
    du Jonchay, Tristan Sarton
    Hou, Linyi
    Ho, Koki
    ACTA ASTRONAUTICA, 2020, 170 (170) : 80 - 92
  • [27] Robotic arm in-situ operations for the Mars Exploration Rovers surface mission
    Trebi-Ollennu, A
    Baumgartner, ET
    Leger, PC
    Bonitz, RG
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 1799 - 1806
  • [28] MARS Benthic Rover: In-Situ Rapid Proto-Testing on the Monterey Accelerated Research System
    Henthorn, R. G.
    Hobson, B. W.
    McGill, P. R.
    Sherman, A. D.
    Smith, K. L.
    OCEANS 2010, 2010,
  • [29] In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return
    Hickman-Lewis, Keyron
    Moore, Kelsey R.
    Hollis, Joseph J. Razzell
    Tuite, Michael L.
    Beegle, Luther W.
    Bhartia, Rohit
    Grotzinger, John P.
    Brown, Adrian J.
    Shkolyar, Svetlana
    Cavalazzi, Barbara
    Smith, Caroline L.
    ASTROBIOLOGY, 2022, 22 (09) : 1143 - 1163
  • [30] Barefoot Rover: a Sensor-Embedded Rover Wheel Demonstrating In-Situ Engineering and Science Extractions using Machine Learning
    Marchetti, Yuliya
    Lightholder, Jack
    Junkins, Eric
    Cross, Matthew
    Mandrake, Lukas
    Fraeman, Abigail
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6000 - 6006