On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets

被引:0
|
作者
B. M. Hambly
机构
[1] Department of Mathematics,
[2] University of Bristol,undefined
[3] University Walk,undefined
[4] Bristol BS8 1TW and BRIMS,undefined
[5] Hewlett Packard Research Laboratories,undefined
[6] Filton Road,undefined
[7] Stoke Gifford,undefined
[8] Bristol BS34 6QZ,undefined
[9] UK. e-mail: b.hambly@bris.ac.uk,undefined
来源
关键词
Spectral Dimension; Laplace Operator; Classical Result; Counting Function; Sierpinski Gasket;
D O I
暂无
中图分类号
学科分类号
摘要
We consider natural Laplace operators on random recursive affine nested fractals based on the Sierpinski gasket and prove an analogue of Weyl’s classical result on their eigenvalue asymptotics. The eigenvalue counting function N(λ) is shown to be of order λds/2 as λ→∞ where we can explicitly compute the spectral dimension ds. Moreover the limit N(λ) λ−ds/2 will typically exist and can be expressed as a deterministic constant multiplied by a random variable. This random variable is a power of the limiting random variable in a suitable general branching process and has an interpretation as the volume of the fractal.
引用
收藏
页码:221 / 247
页数:26
相关论文
共 50 条
  • [1] On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets
    Hambly, BM
    PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (02) : 221 - 247
  • [2] Heat kernels and spectral asymptotics for some random Sierpinski gaskets
    Hambly, BM
    FRACTAL GEOMETRY AND STOCHASTICS II, 2000, 46 : 239 - 267
  • [3] Fluctuation of the transition density for Brownian motion on random recursive Sierpinski gaskets
    Hambly, BM
    Kumagai, T
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 92 (01) : 61 - 85
  • [4] Resistance of random Sierpinski gaskets
    Fontaine, Daniel
    Smith, Thomas
    Teplyaev, Alexander
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 121 - +
  • [5] Random walks on dual Sierpinski gaskets
    Wu, Shunqi
    Zhang, Zhongzhi
    Chen, Guanrong
    EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (01): : 91 - 96
  • [6] Spectral asymptotics for V-variable Sierpinski gaskets
    Freiberg, U.
    Hambly, B. M.
    Hutchinson, John E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 2162 - 2213
  • [7] Random walks on dual Sierpinski gaskets
    Shunqi Wu
    Zhongzhi Zhang
    Guanrong Chen
    The European Physical Journal B, 2011, 82 : 91 - 96
  • [8] Random walks on Sierpinski gaskets of different dimensions
    Weber, Sebastian
    Klafter, Joseph
    Blumen, Alexander
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [9] The localization of quantum random walks on Sierpinski gaskets
    Zhao, Kai
    Yang, Wei-Shih
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [10] Asymptotics of eigenvalue clusters for Schrodinger operators on the Sierpinski gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2453 - 2459