The localization of quantum random walks on Sierpinski gaskets

被引:0
|
作者
Zhao, Kai [1 ]
Yang, Wei-Shih [1 ]
机构
[1] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
INCIPIENT INFINITE CLUSTER; BROWNIAN-MOTION; PERCOLATION;
D O I
10.1063/5.0051324
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider discrete time quantum random walks on a Sierpinski gasket. We study the hitting probability as the level of the fractal graph goes to infinity in terms of their localization exponents beta(w), total variation exponents delta(w), and relative entropy exponents eta(w). We define and solve the amplitude Green functions recursively when the level of the fractal graph goes to infinity. We obtain exact recursive formulas for the amplitude Green functions, on which the hitting probabilities and expectation of the first-passage time are calculated, and using the recursive formula with the aid of Monte Carlo integration, we evaluate their numerical values. We also show that when the level of the fractal graph goes to infinity, with probability 1, the quantum random walks will return to the origin, i.e., the quantum walks on a Sierpinski gasket are recurrent.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] QUANTUM WALKS ON SIERPINSKI GASKETS
    Lara, Pedro Carlos S.
    Portugal, Renato
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (08)
  • [2] Random walks on dual Sierpinski gaskets
    Wu, Shunqi
    Zhang, Zhongzhi
    Chen, Guanrong
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (01): : 91 - 96
  • [3] Random walks on dual Sierpinski gaskets
    Shunqi Wu
    Zhongzhi Zhang
    Guanrong Chen
    [J]. The European Physical Journal B, 2011, 82 : 91 - 96
  • [4] Random walks on Sierpinski gaskets of different dimensions
    Weber, Sebastian
    Klafter, Joseph
    Blumen, Alexander
    [J]. PHYSICAL REVIEW E, 2010, 82 (05):
  • [5] Resistance of random Sierpinski gaskets
    Fontaine, Daniel
    Smith, Thomas
    Teplyaev, Alexander
    [J]. QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 121 - +
  • [6] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    [J]. Quantum Information Processing, 2021, 20
  • [7] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [8] Localization of Quantum Walks Induced by Recurrence Properties of Random Walks
    Segawa, Etsuo
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (07) : 1583 - 1590
  • [9] Scaling for random walks on Sierpinski carpets
    Departamento de Física, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, CEP 24210-340 Niterói, RJ, Brazil
    [J]. Phys Lett Sect A Gen At Solid State Phys, 5-6 (239-242):
  • [10] Dynamical Localization of Quantum Walks in Random Environments
    Joye, Alain
    Merkli, Marco
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) : 1025 - 1053