On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets

被引:0
|
作者
B. M. Hambly
机构
[1] Department of Mathematics,
[2] University of Bristol,undefined
[3] University Walk,undefined
[4] Bristol BS8 1TW and BRIMS,undefined
[5] Hewlett Packard Research Laboratories,undefined
[6] Filton Road,undefined
[7] Stoke Gifford,undefined
[8] Bristol BS34 6QZ,undefined
[9] UK. e-mail: b.hambly@bris.ac.uk,undefined
来源
关键词
Spectral Dimension; Laplace Operator; Classical Result; Counting Function; Sierpinski Gasket;
D O I
暂无
中图分类号
学科分类号
摘要
We consider natural Laplace operators on random recursive affine nested fractals based on the Sierpinski gasket and prove an analogue of Weyl’s classical result on their eigenvalue asymptotics. The eigenvalue counting function N(λ) is shown to be of order λds/2 as λ→∞ where we can explicitly compute the spectral dimension ds. Moreover the limit N(λ) λ−ds/2 will typically exist and can be expressed as a deterministic constant multiplied by a random variable. This random variable is a power of the limiting random variable in a suitable general branching process and has an interpretation as the volume of the fractal.
引用
收藏
页码:221 / 247
页数:26
相关论文
共 50 条