Foliated eight-manifolds for M-theory compactification

被引:0
|
作者
Elena Mirela Babalic
Calin Iuliu Lazaroiu
机构
[1] National Institute of Physics and Nuclear Engineering,Department of Theoretical Physics
[2] University of Craiova,Department of Physics
[3] Institute for Basic Science (IBS),Center for Geometry and Physics
关键词
Flux compactifications; Differential and Algebraic Geometry; NonCommutative Geometry; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize compact eight-manifolds M which arise as internal spaces in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} of M which carries a leafwise G2 structure, such that the O’Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C* algebra CM/ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C\left(M/\mathrm{\mathcal{F}}\right) $$\end{document} is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} is dense in M .
引用
收藏
相关论文
共 50 条
  • [41] On M-Theory
    Hermann Nicolai
    Journal of Astrophysics and Astronomy, 1999, 20 : 149 - 164
  • [42] On M-theory
    Nicolai, H
    THEORY OF ELEMENTARY PARTICLES, 1998, : 448 - 465
  • [43] M-theory on seven-dimensional manifolds with SU(3) structure
    Micu, Andrei
    Palti, Eran
    Saffin, Paul M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05):
  • [44] Type IIA supergravity and M-theory on manifolds with SU(4) structure
    Prins, Daniel
    Tsimpis, Dimitrios
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [45] M-theory vacua from warped compactifications on Spin(7) manifolds
    Constantin, D
    NUCLEAR PHYSICS B, 2005, 706 (1-2) : 221 - 244
  • [46] The landscape of G-structures in eight-manifold compactifications of M-theory
    Elena Mirela Babalic
    Calin Iuliu Lazaroiu
    Journal of High Energy Physics, 2015
  • [47] Flowing with eight supersymmetries in M-theory and F-theory -: art. no. 048
    Gowdigere, CN
    Warner, NP
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (12):
  • [48] The landscape of G-structures in eight-manifold compactifications of M-theory
    Babalic, Elena Mirela
    Lazaroiu, Calin Iuliu
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11): : 1 - 70
  • [49] M-theory and seven-dimensional inhomogeneous Sasaki-Einstein manifolds
    Kim, Hyojoong
    Kim, Nakwoo
    Kim, Sunchang
    Lee, Jung Hun
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01):
  • [50] M-theory and seven-dimensional inhomogeneous Sasaki-Einstein manifolds
    Hyojoong Kim
    Nakwoo Kim
    Sunchang Kim
    Jung Hun Lee
    Journal of High Energy Physics, 2011