Foliated eight-manifolds for M-theory compactification

被引:0
|
作者
Elena Mirela Babalic
Calin Iuliu Lazaroiu
机构
[1] National Institute of Physics and Nuclear Engineering,Department of Theoretical Physics
[2] University of Craiova,Department of Physics
[3] Institute for Basic Science (IBS),Center for Geometry and Physics
关键词
Flux compactifications; Differential and Algebraic Geometry; NonCommutative Geometry; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize compact eight-manifolds M which arise as internal spaces in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} of M which carries a leafwise G2 structure, such that the O’Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C* algebra CM/ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C\left(M/\mathrm{\mathcal{F}}\right) $$\end{document} is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} is dense in M .
引用
收藏
相关论文
共 50 条
  • [31] Higgs bundles for M-theory on G2-manifolds
    Andreas P. Braun
    Sebastjan Cizel
    Max Hübner
    Sakura Schäfer-Nameki
    Journal of High Energy Physics, 2019
  • [32] Higgs bundles for M-theory on G2-manifolds
    Braun, Andreas P.
    Cizel, Sebastjan
    Hubner, Max
    Schafer-Nameki, Sakura
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
  • [33] Anomalies in M-theory on singular G2-manifolds
    Bilal, A
    Metzger, S
    NUCLEAR PHYSICS B, 2003, 672 (1-2) : 239 - 263
  • [34] N=1 heterotic/M-theory duality and joyce manifolds
    Acharya, BS
    NUCLEAR PHYSICS B, 1996, 475 (03) : 579 - 596
  • [35] M-theory compactifications on manifolds with G2 structure
    House, T
    Micu, A
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1709 - 1738
  • [36] M-theory compactification, fluxes, and AdS4 -: art. no. 046005
    Lukas, A
    Saffin, PM
    PHYSICAL REVIEW D, 2005, 71 (04): : 046005 - 1
  • [37] A note on T-5/Z(2) compactification of the M-theory matrix model
    Fayyazuddin, A
    Smith, DJ
    PHYSICS LETTERS B, 1997, 407 (01) : 8 - 11
  • [38] Time-dependent supersymmetric solutions in M-theory and the compactification-decompactification transition
    Kodama, Hideo
    Ohta, Nobuyoshi
    PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (02): : 295 - 318
  • [39] On M-theory
    Nicolai, H
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 1999, 20 (3-4) : 149 - 164
  • [40] M-theory
    Polkinghorne, John
    TLS-THE TIMES LITERARY SUPPLEMENT, 2010, (5620): : 6 - 6