Foliated eight-manifolds for M-theory compactification

被引:0
|
作者
Elena Mirela Babalic
Calin Iuliu Lazaroiu
机构
[1] National Institute of Physics and Nuclear Engineering,Department of Theoretical Physics
[2] University of Craiova,Department of Physics
[3] Institute for Basic Science (IBS),Center for Geometry and Physics
关键词
Flux compactifications; Differential and Algebraic Geometry; NonCommutative Geometry; M-Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize compact eight-manifolds M which arise as internal spaces in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} of M which carries a leafwise G2 structure, such that the O’Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C* algebra CM/ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C\left(M/\mathrm{\mathcal{F}}\right) $$\end{document} is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{F}} $$\end{document} is dense in M .
引用
收藏
相关论文
共 50 条
  • [1] Foliated eight-manifolds for M-theory compactification
    Babalic, Elena Mirela
    Lazaroiu, Calin Iuliu
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):
  • [2] M-theory on eight-manifolds
    Becker, K
    Becker, M
    NUCLEAR PHYSICS B, 1996, 477 (01) : 155 - 167
  • [3] M-theory on non-Kahler eight-manifolds
    Shahbazi, C. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [4] M-theory on non-Kähler eight-manifolds
    C. S. Shahbazi
    Journal of High Energy Physics, 2015
  • [5] M-theory on eight-manifolds revisited:: N=1 supersymmetry and generalized Spin(7) structures
    Tsimpis, D
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (04):
  • [6] Flux compactification of M-theory on compact manifolds with Spin(7) holonomy
    Constantin, D
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (11-12): : 1272 - 1329
  • [7] Anisotropic compactification of nonrelativistic M-theory
    Stephen Ebert
    Ziqi Yan
    Journal of High Energy Physics, 2023
  • [8] Singular foliations for M-theory compactification
    Elena Mirela Babalic
    Calin Iuliu Lazaroiu
    Journal of High Energy Physics, 2015
  • [9] Compactification of M-theory and susy breaking
    Grojean, C
    STRINGS, BRANES AND DUALITIES, 1999, 520 : 455 - 458
  • [10] Singular foliations for M-theory compactification
    Babalic, Elena Mirela
    Lazaroiu, Calin Luliu
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):