Invariant properties of representations under cleft extensions

被引:0
|
作者
Fang Li
Mian-mian Zhang
机构
[1] Zhejiang University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
cleft extensions; crossed product; Nakayama algebra; representation type; 16G60; 16W30; 16S40;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this paper is to give the invariant properties of representations of algebras under cleft extensions over a semisimple Hopf algebra. Firstly, we explain the concept of the cleft extension and give a relation between the cleft extension and the crossed product which is the approach we depend upon. Then, by making use of them, we prove that over an algebraically closed field k, for a finite dimensional Hopf algebra H which is semisimple as well as its dual H*, the representation type of an algebra is an invariant property under a finite dimensional H-cleft extension. In the other part, we still show that over an arbitrary field k, the Nakayama property of a k-algebra is also an invariant property under an H-cleft extension when the radical of the algebra is H-stable.
引用
收藏
页码:121 / 131
页数:10
相关论文
共 50 条
  • [21] Extensions of tempered representations
    Eric Opdam
    Maarten Solleveld
    Geometric and Functional Analysis, 2013, 23 : 664 - 714
  • [22] Extensions of symmetric operators that are invariant under scaling and applications to indicial operators
    Krainer, Thomas
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 705 - 772
  • [23] Invariant approximation property under group passes to extensions with a finite quotient
    Kannan, Kankeyanathan
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 345 - 361
  • [24] Extensions of tempered representations
    Opdam, Eric
    Solleveld, Maarten
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (02) : 664 - 714
  • [25] Fuzzy preorders: conditional extensions, extensions and their representations
    J. C. R. Alcantud
    S. Díaz
    Fuzzy Optimization and Decision Making, 2016, 15 : 371 - 396
  • [26] Fuzzy preorders: conditional extensions, extensions and their representations
    Alcantud, J. C. R.
    Diaz, S.
    FUZZY OPTIMIZATION AND DECISION MAKING, 2016, 15 (04) : 371 - 396
  • [27] REPRESENTATIONS UNDER RING EXTENSIONS - LATIMER-MACDUFFEE AND TAUSSKY CORRESPONDENCES
    ESTES, DR
    GURALNICK, RM
    ADVANCES IN MATHEMATICS, 1984, 54 (03) : 302 - 313
  • [28] EXTENSIONS OF PROJECTIVE REPRESENTATIONS TO UNITARY GROUP REPRESENTATIONS
    JADCZYK, AZ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (06): : 581 - 583
  • [29] Cleft extensions and Galois extensions for Hom-associative algebras
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (03)
  • [30] Weak C-cleft extensions and weak Galois extensions
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Rodriguez Raposo, A. B.
    JOURNAL OF ALGEBRA, 2006, 299 (01) : 276 - 293