Extensions of tempered representations

被引:6
|
作者
Opdam, Eric [1 ]
Solleveld, Maarten [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1098 XH Amsterdam, Netherlands
[2] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
关键词
P-ADIC GROUPS; PARABOLIC INDUCTION; FRECHET ALGEBRAS; THEOREM;
D O I
10.1007/s00039-013-0219-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi, pi' be irreducible tempered representations of an affine Hecke algebra with positive parameters. We compute the higher extension groups Ext explicitly in terms of the representations of analytic R-groups corresponding to pi and pi'. The result has immediate applications to the computation of the Euler-Poincar, pairing EP (pi, pi'), the alternating sum of the dimensions of the Ext-groups. The resulting formula for EP(pi, pi') is equal to Arthur's formula for the elliptic pairing of tempered characters in the setting of reductive p-adic groups. Our proof applies equally well to affine Hecke algebras and to reductive groups over non-archimedean local fields of arbitrary characteristic. This sheds new light on the formula of Arthur and gives a new proof of Kazhdan's orthogonality conjecture for the Euler-Poincar, pairing of admissible characters.
引用
收藏
页码:664 / 714
页数:51
相关论文
共 50 条
  • [1] Extensions of tempered representations
    Eric Opdam
    Maarten Solleveld
    [J]. Geometric and Functional Analysis, 2013, 23 : 664 - 714
  • [2] On tempered representations
    Kazhdan, David
    Din, Alexander Yom
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 239 - 280
  • [3] TEMPERED REPRESENTATIONS AND ORBITS
    ROSSMANN, W
    [J]. DUKE MATHEMATICAL JOURNAL, 1982, 49 (01) : 231 - 247
  • [4] Tempered representations and the theta correspondence
    Roberts, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (05): : 1105 - 1118
  • [5] TEMPERED REPRESENTATIONS AND NILPOTENT ORBITS
    Harris, Benjamin
    [J]. REPRESENTATION THEORY, 2012, 16 : 610 - 619
  • [6] Extensions of irreducible representations
    Minkwitz, T
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 391 - 399
  • [7] EXTENSIONS OF UNBOUNDED REPRESENTATIONS
    INOUE, A
    KUROSE, H
    OTA, S
    [J]. MATHEMATISCHE NACHRICHTEN, 1992, 155 : 257 - 268
  • [8] EXTENSIONS OF ALGEBRAIC REPRESENTATIONS
    HUDRY, A
    [J]. COMMUNICATIONS IN ALGEBRA, 1992, 20 (07) : 2043 - 2073
  • [9] Tempered positive Linnik processes and their representations
    Torricelli, Lorenzo
    Barabesi, Lucio
    Cerioli, Andrea
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 6313 - 6347
  • [10] Fuzzy preorders: conditional extensions, extensions and their representations
    J. C. R. Alcantud
    S. Díaz
    [J]. Fuzzy Optimization and Decision Making, 2016, 15 : 371 - 396