Notes on the Norm Estimates for the Sum of Two Matrices

被引:0
|
作者
Man Duen Choi
机构
[1] University of Toronto,Department of Mathematics
来源
Acta Mathematica Sinica | 2003年 / 19卷
关键词
Ultimate norm estimate; Triangle inequality; Spectral variation; Non-commuting normal matrices; 47A30; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
This is a lecture note of my joint work with Chi-Kwong Li concerning various results on the norm structure of n × n matrices (as Hilbert-space operators). The main result says that the triangle inequality serves as the ultimate norm estimate for the upper bounds of summation of two matrices. In the case of summation of two normal matrices, the result turns out to be a norm estimate in terms of the spectral variation for normal matrices.
引用
收藏
页码:595 / 598
页数:3
相关论文
共 50 条
  • [21] SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES
    Kargin, V.
    ANNALS OF PROBABILITY, 2015, 43 (04): : 2119 - 2150
  • [22] Inverting the sum of two singular matrices
    Eriksson, Sofia
    Nordqvist, Jonas
    RESULTS IN APPLIED MATHEMATICS, 2024, 22
  • [23] Euclidean norm estimates of the inverse of some special block matrices
    Cvetkovic, Ljiljana
    Kostic, Vladimir
    Doroslovacki, Ksenija
    Cvetkovic, Dragana Lj.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 284 : 12 - 23
  • [24] Norm estimates of the partial transpose map on the tensor products of matrices
    Ando, Tsuyoshi
    Sano, Takashi
    POSITIVITY, 2008, 12 (01) : 9 - 24
  • [25] Norm Estimates for Matrices with Arbitrary Elements Constantin Binary Blocks
    Diuzhev, E. M.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (03) : 126 - 128
  • [26] Estimates of the norm of the Mercer kernel matrices with discrete orthogonal transforms
    Sheng, B.
    ACTA MATHEMATICA HUNGARICA, 2009, 122 (04) : 339 - 355
  • [27] Norm Estimates for Matrices with Arbitrary Elements Constantin Binary Blocks
    E. M. Diuzhev
    Moscow University Mathematics Bulletin, 2020, 75 : 126 - 128
  • [28] Estimates of the norm of the Mercer kernel matrices with discrete orthogonal transforms
    B. Sheng
    Acta Mathematica Hungarica, 2009, 122 : 339 - 355
  • [29] Norm Estimates of the Partial Transpose Map on the Tensor Products of Matrices
    Tsuyoshi Ando
    Takashi Sano
    Positivity, 2008, 12 : 9 - 24
  • [30] Notes on some inequalities of eigenvalues and norm of real symmetrical matrices
    Xie Qingming
    Zhu Li
    Advances in Matrix Theory and Applications, 2006, : 35 - 37