Time-dependent harmonic oscillator and spectral determinant on graphs

被引:0
|
作者
J. Desbois
机构
[1] Laboratoire de Physique Théorique et Modèles Statistiques,
[2] Université Paris-Sud,undefined
[3] bâtiment 100,undefined
[4] 91405 Orsay Cedex,undefined
[5] France,undefined
关键词
PACS. 02.70.-c Computational techniques - 03.65.-w Quantum mechanics - 11.10.-z Field theory;
D O I
暂无
中图分类号
学科分类号
摘要
Using a path integral approach and also considerations about the time-dependent harmonic oscillator, we compute the spectral determinant of the operator (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}) on a graph. (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the Laplacian and V(x) is some potential defined on the graph). We recover a recent result that was obtained by constructing the Green's function on the graph. We also extend those considerations to the case when i) a magnetic field is added to the system, ii) the potential, V(x), contains repulsive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} peaks.
引用
收藏
页码:201 / 203
页数:2
相关论文
共 50 条
  • [1] Time-dependent harmonic oscillator and spectral determinant on graphs
    Desbois, J
    EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (02): : 201 - 203
  • [2] TIME-DEPENDENT HARMONIC OSCILLATOR
    SALUSTI, E
    ZIRILLI, F
    LETTERE AL NUOVO CIMENTO, 1970, 4 (21): : 999 - &
  • [3] The time-dependent harmonic oscillator revisited
    Fiore, Gaetano
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (05)
  • [4] Time evolution of the time-dependent harmonic oscillator
    Xu, JB
    Yu, YH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 29 (03) : 385 - 388
  • [5] Information theories for time-dependent harmonic oscillator
    Choi, Jeong Ryeol
    Kim, Min-Soo
    Kim, Daeyeoul
    Maamache, Mustapha
    Menouar, Salah
    Nahm, In Hyun
    ANNALS OF PHYSICS, 2011, 326 (06) : 1381 - 1393
  • [6] QUANTUM HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY
    SOLIMENO, S
    DIPORTO, P
    CROSIGNA.B
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1922 - &
  • [7] INVARIANTS FOR THE TIME-DEPENDENT HARMONIC-OSCILLATOR
    COLEGRAVE, RK
    MANNAN, MA
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (07) : 1580 - 1587
  • [8] Quantum harmonic oscillator with time-dependent mass
    Ramos-Prieto, I
    Espinosa-Zuniga, A.
    Fernandez-Guasti, M.
    Moya-Cessa, H. M.
    MODERN PHYSICS LETTERS B, 2018, 32 (20):
  • [9] A quadratic time-dependent quantum harmonic oscillator
    F. E. Onah
    E. García Herrera
    J. A. Ruelas-Galván
    G. Juárez Rangel
    E. Real Norzagaray
    B. M. Rodríguez-Lara
    Scientific Reports, 13
  • [10] NOTE ON TIME-DEPENDENT HARMONIC-OSCILLATOR
    ELIEZER, CJ
    GRAY, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (03) : 463 - 468