Time-dependent harmonic oscillator and spectral determinant on graphs

被引:0
|
作者
J. Desbois
机构
[1] Laboratoire de Physique Théorique et Modèles Statistiques,
[2] Université Paris-Sud,undefined
[3] bâtiment 100,undefined
[4] 91405 Orsay Cedex,undefined
[5] France,undefined
关键词
PACS. 02.70.-c Computational techniques - 03.65.-w Quantum mechanics - 11.10.-z Field theory;
D O I
暂无
中图分类号
学科分类号
摘要
Using a path integral approach and also considerations about the time-dependent harmonic oscillator, we compute the spectral determinant of the operator (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}) on a graph. (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is the Laplacian and V(x) is some potential defined on the graph). We recover a recent result that was obtained by constructing the Green's function on the graph. We also extend those considerations to the case when i) a magnetic field is added to the system, ii) the potential, V(x), contains repulsive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} peaks.
引用
收藏
页码:201 / 203
页数:2
相关论文
共 50 条