On semi-progression van der Waerden numbers

被引:0
|
作者
Zehui Shao
Xiaodong Xu
机构
[1] Chengdu University,School of Information Science and Technology
[2] Institutions of Higher Education of Sichuan Province,Key Laboratory of Pattern Recognition and Intelligent Information Processing
[3] Guangxi Academy of Sciences,undefined
来源
关键词
Arithmetic progression; Szemer; di’s theorem; Dynamic programming; Semi-progression; Primary 05D10; Secondary 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, a dynamic programming-like method is used to detect \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-term semi-progression efficiently. By using this approach, we obtain some exact values and new lower bounds on semi-progression van der Waerden numbers.
引用
收藏
页码:19 / 25
页数:6
相关论文
共 50 条