On semi-progression van der Waerden numbers

被引:0
|
作者
Zehui Shao
Xiaodong Xu
机构
[1] Chengdu University,School of Information Science and Technology
[2] Institutions of Higher Education of Sichuan Province,Key Laboratory of Pattern Recognition and Intelligent Information Processing
[3] Guangxi Academy of Sciences,undefined
来源
关键词
Arithmetic progression; Szemer; di’s theorem; Dynamic programming; Semi-progression; Primary 05D10; Secondary 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, a dynamic programming-like method is used to detect \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-term semi-progression efficiently. By using this approach, we obtain some exact values and new lower bounds on semi-progression van der Waerden numbers.
引用
收藏
页码:19 / 25
页数:6
相关论文
共 50 条
  • [21] A lower bound for off-diagonal van der Waerden numbers
    Li, Yusheng
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (03) : 243 - 247
  • [22] Anti-van der Waerden numbers of graph products of cycles
    Miller, Joe
    Warnberg, Nathan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 87 : 24 - 40
  • [23] Some Lower Bounds for Three Color Van Der Waerden Numbers
    Li, Yong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 620 - 623
  • [24] A new method to construct lower bounds for Van der Waerden numbers
    Herwig, P. R.
    Heule, M. J. H.
    van Lambalgen, P. M.
    van Maaren, H.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [25] van der Waerden and the Primes
    Alpoge, Levent
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 784 - 785
  • [26] ON A FUNCTION OF VAN DER WAERDEN
    SCHUBERT, SR
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 402 - &
  • [27] The van der Waerden complex
    Ehrenborg, Richard
    Govindaiah, Likith
    Park, Peter S.
    Readdy, Margaret
    JOURNAL OF NUMBER THEORY, 2017, 172 : 287 - 300
  • [28] Van der Waerden rings
    Remus, Dieter
    Ursul, Mihail
    TOPOLOGY AND ITS APPLICATIONS, 2017, 229 : 148 - 175
  • [29] JULIA VAN DER WAERDEN
    van der Waerden, Julia
    STRAD, 2019, 130 (1553): : 94 - 95
  • [30] A subexponential upper bound for van der Waerden numbers W(3, k)
    Schoen, Tomasz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):