On semi-progression van der Waerden numbers

被引:0
|
作者
Zehui Shao
Xiaodong Xu
机构
[1] Chengdu University,School of Information Science and Technology
[2] Institutions of Higher Education of Sichuan Province,Key Laboratory of Pattern Recognition and Intelligent Information Processing
[3] Guangxi Academy of Sciences,undefined
来源
关键词
Arithmetic progression; Szemer; di’s theorem; Dynamic programming; Semi-progression; Primary 05D10; Secondary 05D05;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, a dynamic programming-like method is used to detect \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-term semi-progression efficiently. By using this approach, we obtain some exact values and new lower bounds on semi-progression van der Waerden numbers.
引用
收藏
页码:19 / 25
页数:6
相关论文
共 50 条
  • [1] On semi-progression van der Waerden numbers
    Shao, Zehui
    Xu, Xiaodong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 19 - 25
  • [2] Bounds on some van der Waerden numbers
    Brown, Tom
    Landman, Bruce M.
    Robertson, Aaron
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1304 - 1309
  • [3] Some More Van der Waerden Numbers
    Ahmed, Tanbir
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (04)
  • [4] Satisfiability and computing van der Waerden numbers
    Dransfield, MR
    Marek, VW
    Truszczynski, M
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 1 - 13
  • [5] Satisfiability and computing van der Waerden numbers
    Dransfield, MR
    Marek, VW
    Liu, LN
    Truszcynski, M
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [6] New lower bounds for van der Waerden numbers
    Green, Ben
    FORUM OF MATHEMATICS PI, 2022, 10
  • [7] Anti-van der Waerden Numbers on Graphs
    Berikkyzy, Zhanar
    Schulte, Alex
    Sprangel, Elizabeth
    Walker, Shanise
    Warnberg, Nathan
    Young, Michael
    GRAPHS AND COMBINATORICS, 2022, 38 (04)
  • [8] IMPROVED LOWER BOUNDS FOR VAN DER WAERDEN NUMBERS
    Hunter, Zach
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1231 - 1252
  • [9] A novel SAT solver for the Van der Waerden numbers
    Munira A. Abd El-Maksoud
    Areeg Abdalla
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [10] Anti-van der Waerden Numbers on Graphs
    Zhanar Berikkyzy
    Alex Schulte
    Elizabeth Sprangel
    Shanise Walker
    Nathan Warnberg
    Michael Young
    Graphs and Combinatorics, 2022, 38