Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem

被引:0
|
作者
Martin Čermák
Frédéric Hecht
Zuqi Tang
Martin Vohralík
机构
[1] VSB - Technical University of Ostrava,IT4Innovations National Supercomputing Center (IT4I)
[2] UPMC Univ Paris 06,Laboratoire Jacques
[3] CNRS,Louis Lions, UMR 7598
[4] INRIA Paris,Laboratoire Jacques
[5] EA 2697 - L2EP - Laboratoire d’Electrotechnique et d’Electronique de Puissance,Louis Lions, UMR 7598
[6] CERMICS (ENPC),Univ. Lille, Centrale Lille, Arts et Métiers Paris Tech, HEI
来源
Numerische Mathematik | 2018年 / 138卷
关键词
Stokes problem; Conforming finite element method; Adaptive inexact iterative algorithm; Outer-inner iteration; Uzawa method; MinRes; A posteriori error estimate; Guaranteed bound; Efficiency; Polynomial-degree-robustness; Interplay between error components; Adaptive stopping criterion; 65N15; 65N22; 65N30; 65F10; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor–Hood discretization.
引用
收藏
页码:1027 / 1065
页数:38
相关论文
共 18 条
  • [1] Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
    Cermak, Martin
    Hecht, Frederic
    Tang, Zuqi
    Vohralik, Martin
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 1027 - 1065
  • [2] Inexpensive polynomial-degree-robust equilibrated flux a posteriori estimates for isogeometric analysis
    Gantner, Gregor
    Vohralik, Martin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (03): : 477 - 522
  • [3] hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
    Dolejsi, Vit
    Ern, Alexandre
    Vohralik, Martin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3220 - A3246
  • [4] ASYMPTOTICALLY CONSTANT-FREE AND POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ESTIMATES FOR SPACE DISCRETIZATIONS OF THE WAVE EQUATION
    Chaumont-Frelet, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1591 - A1620
  • [5] POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ESTIMATES IN A UNIFIED SETTING FOR CONFORMING, NONCONFORMING, DISCONTINUOUS GALERKIN, AND MIXED DISCRETIZATIONS
    Ern, Alexandre
    Vohralik, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 1058 - 1081
  • [6] A POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATOR FOR NEDELEC DISCRETIZATIONS OF MAGNETOSTATIC PROBLEMS
    Gedicke, Joscha
    Geevers, Sjoerd
    Perugia, Ilaria
    Schoeberl, Joachim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 2237 - 2253
  • [7] A SIMPLE EQUILIBRATION PROCEDURE LEADING TO POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATORS FOR THE CURL-CURL PROBLEM
    Chaumont-Frelet, T.
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2413 - 2437
  • [8] A POSTERIORI ANALYSIS OF ITERATIVE ALGORITHMS FOR NAVIER-STOKES PROBLEM
    Bernardi, Christine
    Dakroub, Jad
    Mansour, Gihane
    Sayah, Toni
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 1035 - 1055
  • [9] A posteriori error estimates and adaptive mesh refinement for the Stokes-Brinkman problem
    Williamson, Kevin
    Burda, Pavel
    Sousedik, Bedrich
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 166 : 266 - 282
  • [10] A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator
    Huang, Pengzhan
    Zhang, Qiuyu
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 295 - 304