Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem

被引:0
|
作者
Martin Čermák
Frédéric Hecht
Zuqi Tang
Martin Vohralík
机构
[1] VSB - Technical University of Ostrava,IT4Innovations National Supercomputing Center (IT4I)
[2] UPMC Univ Paris 06,Laboratoire Jacques
[3] CNRS,Louis Lions, UMR 7598
[4] INRIA Paris,Laboratoire Jacques
[5] EA 2697 - L2EP - Laboratoire d’Electrotechnique et d’Electronique de Puissance,Louis Lions, UMR 7598
[6] CERMICS (ENPC),Univ. Lille, Centrale Lille, Arts et Métiers Paris Tech, HEI
来源
Numerische Mathematik | 2018年 / 138卷
关键词
Stokes problem; Conforming finite element method; Adaptive inexact iterative algorithm; Outer-inner iteration; Uzawa method; MinRes; A posteriori error estimate; Guaranteed bound; Efficiency; Polynomial-degree-robustness; Interplay between error components; Adaptive stopping criterion; 65N15; 65N22; 65N30; 65F10; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor–Hood discretization.
引用
收藏
页码:1027 / 1065
页数:38
相关论文
共 18 条