Equivariant realizations of Hermitian symmetric space of noncompact type

被引:0
|
作者
Takahiro Hashinaga
Toru Kajigaya
机构
[1] Kitakyushu College,National Institute of Technology
[2] Tokyo University of Science,Department of Mathematics, Faculty of Science
[3] National Institute of Advanced Industrial Science and Technology (AIST),MathAM
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
Hermitian symmetric spaces; Equivariant realizations; Totally geodesic submanifolds; 53C35; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M=G/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=G/K$$\end{document} be a Hermitian symmetric space of noncompact type. We provide a way of constructing K-equivariant embeddings from M to its tangent space ToM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_oM$$\end{document} at the origin by using the polarity of the K-action. As an application, we reconstruct the K-equivariant holomorphic embedding so called the Harish-Chandra realization and the K-equivariant symplectomorphism constructed by Di Scala-Loi and Roos under appropriate identifications of spaces. Moreover, we characterize the holomorphic/symplectic embedding of M by means of the polarity of the K-action. Furthermore, we show a special class of totally geodesic submanifolds in M is realized as either linear subspaces or bounded domains of linear subspaces in ToM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_oM$$\end{document} by the K-equivariant embeddings. We also construct a K-equivariant holomorphic/symplectic embedding of an open dense subset of the compact dual M∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^*$$\end{document} into its tangent space at the origin as a dual of the holomorphic/symplectic embedding of M.
引用
收藏
页码:2363 / 2411
页数:48
相关论文
共 50 条