Equivariant realizations of Hermitian symmetric space of noncompact type

被引:0
|
作者
Takahiro Hashinaga
Toru Kajigaya
机构
[1] Kitakyushu College,National Institute of Technology
[2] Tokyo University of Science,Department of Mathematics, Faculty of Science
[3] National Institute of Advanced Industrial Science and Technology (AIST),MathAM
来源
Mathematische Zeitschrift | 2022年 / 300卷
关键词
Hermitian symmetric spaces; Equivariant realizations; Totally geodesic submanifolds; 53C35; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M=G/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=G/K$$\end{document} be a Hermitian symmetric space of noncompact type. We provide a way of constructing K-equivariant embeddings from M to its tangent space ToM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_oM$$\end{document} at the origin by using the polarity of the K-action. As an application, we reconstruct the K-equivariant holomorphic embedding so called the Harish-Chandra realization and the K-equivariant symplectomorphism constructed by Di Scala-Loi and Roos under appropriate identifications of spaces. Moreover, we characterize the holomorphic/symplectic embedding of M by means of the polarity of the K-action. Furthermore, we show a special class of totally geodesic submanifolds in M is realized as either linear subspaces or bounded domains of linear subspaces in ToM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_oM$$\end{document} by the K-equivariant embeddings. We also construct a K-equivariant holomorphic/symplectic embedding of an open dense subset of the compact dual M∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^*$$\end{document} into its tangent space at the origin as a dual of the holomorphic/symplectic embedding of M.
引用
收藏
页码:2363 / 2411
页数:48
相关论文
共 50 条
  • [21] Submanifold geometry in symmetric spaces of noncompact type
    Carlos Diaz-Ramos, J.
    Dominguez-Vazquez, Miguel
    Sanmartin-Lopez, Victor
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 75 - 110
  • [22] A Geometric Mean for Symmetric Spaces of Noncompact Type
    Liao, Ming
    Liu, Xuhua
    Tam, Tin-Yau
    JOURNAL OF LIE THEORY, 2014, 24 (03) : 725 - 736
  • [23] Hermitian realizations of k-Minkowski space-time
    Kovacevic, Domagoj
    Meljanac, Stjepan
    Samsarov, Andjelo
    Skoda, Zoran
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (03):
  • [24] Geometrical finiteness of symmetric spaces of noncompact type
    Kim, I
    FORUM MATHEMATICUM, 2000, 12 (01) : 97 - 108
  • [25] A construction of equivariant bundles on the space of symmetric forms
    Boralevi, Ada
    Faenzi, Daniele
    Lella, Paolo
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (03) : 761 - 782
  • [26] Factorization Theorems on Symmetric Spaces of Noncompact Type
    Piotr Graczyk
    Journal of Theoretical Probability, 1999, 12 : 375 - 383
  • [27] Factorization theorems on symmetric spaces of noncompact type
    Graczyk, P
    JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 375 - 383
  • [28] Resolvent estimates on symmetric spaces of noncompact type
    Kaizuka, Koichi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (03) : 895 - 926
  • [29] Submanifold geometry in symmetric spaces of noncompact type
    J. Carlos Díaz-Ramos
    Miguel Domínguez-Vázquez
    Víctor Sanmartín-López
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 75 - 110
  • [30] Invariant domains in the complexification of a noncompact Riemannian symmetric space
    Geatti, L
    JOURNAL OF ALGEBRA, 2002, 251 (02) : 619 - 685