Controlling Canard Cycles

被引:0
|
作者
Hildeberto Jardón-Kojakhmetov
Christian Kuehn
机构
[1] Mathematical Physics – Bernoulli Institute,University of Groningen, Faculty of Science and Engineering, Dynamical Systems, Geometry &
[2] Zentrum Mathematik,Technische Universität München, Forschungseinheit Dynamics
关键词
Canard cycles; Singular perturbations; Feedback control; 34E17; 93C70; 93D15;
D O I
暂无
中图分类号
学科分类号
摘要
Canard cycles are periodic orbits that appear as special solutions of fast-slow systems (or singularly perturbed ordinary differential equations). It is well known that canard cycles are difficult to detect, hard to reproduce numerically, and that they are sensible to exponentially small changes in parameters. In this paper, we combine techniques from geometric singular perturbation theory, the blow-up method, and control theory, to design controllers that stabilize canard cycles of planar fast-slow systems with a folded critical manifold. As an application, we propose a controller that produces stable mixed-mode oscillations in the van der Pol oscillator.
引用
下载
收藏
页码:517 / 544
页数:27
相关论文
共 50 条
  • [21] On estimation of the global error of numerical solution on canard-cycles
    Chumakov, G. A.
    Lashina, E. A.
    Chumakova, N. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 116 : 59 - 74
  • [22] FRACTAL ANALYSIS OF CANARD CYCLES WITH TWO BREAKING PARAMETERS AND APPLICATIONS
    Huzak, Renato
    Vlah, Domagoj
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (02) : 959 - 975
  • [23] Cyclicity of slow-fast cycles with two canard mechanisms
    Yao, Jinhui
    Huang, Jicai
    Huzak, Renato
    CHAOS, 2024, 34 (05)
  • [24] Canard Limit Cycles for Piecewise Linear Lienard Systems with Three Zones
    Li, Shimin
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):
  • [25] CANARD CANARD
    BLACKBURN, AW
    AEROSPACE AMERICA, 1986, 24 (08) : 38 - 41
  • [26] DETECTABLE CANARD CYCLES WITH SINGULAR SLOW DYNAMICS OF ANY ORDER AT THE TURNING POINT
    De Maesschalck, Peter
    Dumortier, Freddy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) : 109 - 140
  • [27] Controlling the multiplicity of limit cycles
    Moiola, Jorge L.
    Chen, Guanrong
    Proceedings of the IEEE Conference on Decision and Control, 1998, 3 : 3052 - 3057
  • [28] THE CONTROLLING FACTOR IN TRADE CYCLES
    Bellerby, J. R.
    ECONOMIC JOURNAL, 1923, 33 (131): : 305 - 331
  • [29] CONTROLLING FURNACE TEMPERATURE CYCLES
    不详
    METALLURGIA AND METAL FORMING, 1975, 42 (11): : 388 - 388
  • [30] Controlling the multiplicity of limit cycles
    Moiola, JL
    Chen, GR
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3052 - 3057